
Time Dependent Quantum Chemistry

Professor. Atanu Bhattacharya

Department of Inorganic and Physical Chemistry

Indian Institute of Science, Bengaluru

Lecture 15

Normalizing the Discretized Wavefunction and Finding Expectation Value

Welcome back to python tutorial 2, we have presented how to represent a wave function, how to

discretize a wave function or how to represent a wave function on a position grid.

(Refer Slide Time: 0:44)

And next what we will do, we will take that discretized wave function and we will normalize it

and we will check how to normalize it. The wave function which we have taken, this is the form

of the wave function we have taken, clearly it is not a normalized wave function I can prove that

and in order to prove that what I need to do is that I have to take this integration,

2

22 2

2

()

()

() 1
2

x

x

x e

x dx e dx

x dx








−

 

−

− −



−

=

=

= 

 



So we have to take the square of absolute value of this wave function and then take the integration

of it. So, normalized, if it is a normalized wave function, then this integration should have given

me 1 but because it is not giving me 1 it is not normalized.

So, I have to make it normalized and for the normalization what we will do is we have to find out

the norm. Norm is defined by the square root of this entire integration, the square root of this

integration

1

2
2

(,)Norm x t dx


−

 
=  
 


and once we get the norm then we divide the wave function non-normalized wave function which

is not normalized yet that way function has to be divided by its own norm to get the normalized

wave function. And then if I do

1

2
2

2

()
()

(,)

() 1

normalized

normalized

x
x

x t dx

x dx










−



−

=

 
 
 

=





so that is the procedure for doing normalization.

So, let us look at this for this wave function we can easily find out the norm. Norm is going to be

square root of this

1

4

2
Norm

 
=  
 

So, analytical form of normalized Gaussian function,

2

2

1

4

1

4

2
()

2

x
x

normalized

e
x e




−
− 

= =  
 

 
 
 

And what is our task here in this tutorial is that we normalize the discretized wave function this

wave function has been discretized already, we have seen how to discretize this wave function we

will use that discretized wave function and we will numerically normalize it.

(Refer Slide Time: 4:26)

So, in order to do this normalization clearly we have to do this numerical integration because this

integration has to be now performed numerically. This integration will give me the norm and once

I get the norm I can take square root of that norm and divide this wave function by the square root

of norm I get the normalized wave function. So ultimately, we have to depend on numerical

integration of this absolute square of absolute value of the wave function.

Now there are many ways one can perform numerical integration. Numerical methodology can

construct a full-fledged course and in this course we are not actually going over numerical

methodologies, we are always using making use of scipy all the functionalities which is

implemented in scipy because scipy has been developed keeping scientific community in mind

and there are many protocols which is already packaged in scipy which can be very useful for the

numerical analysis or numerical solutions.

So, will make use of a highly optimized integration package of scipy it is called scipyintegrate this

package provides many options to do a numerical integration. So, it has a pre-written code in it

and we are going to use that code directly to do the to perform this numerical integration. The

scipy integrate sub module of scipy provides a number of integration techniques including

simpson’s rule, now what is the simpson’s rule? We will not go over in details in this course. It is

a numerical technique which can enable one to get a numerical integration term.

So, we will use this simpson's rule there are many other techniques which can be used which are

already included in this scipy integrate package, but we are just selecting simpson's rule. And the

construct which we have to use in order to implement this simpson’s rule for the numerical

integration is called is following it is simps (Y,X)functionality where y would be an array and x

would be also an array both would be an array.

And we have already got those arrays we in instead of y we have now x that is instead of y we

have now this
2

()x this is going to be my y array and x array is already the x grid we have

prepared. So, already we have both arrays in hand and we have to use that under this construct

simps(Y,X) just remind we remind ourselves that when you have used plot functionality of pi plot

we have used x, y plot(x,y) construct and here when you are doing in numerical integration

imported from the module input imported from fi integrate I have seems y, x so y comes first and

then x.

So, this is the this is something which may confuse certainly somebody if you are doing this python

programming for the first time. Just remember that we have already used plot functionality of

pyplot that has a construct (x,y) but here I have a construct (y,x) so do not get confused or do not

shuffle these two arrays or do not write like simps(x,y) do not write it like this way. So, this is just

something which may we may do something wrong in the in the coding if we write it.

So, the simps y x functionality of psi by integrate sub module integrates the y array numerically

while x array provides the points at which y has to be sampled to compute the the simpson’s rule

of the numerical integration. So, we will use this, it is a very simple thing and it is a pre-written

code it has, so once you invoke this simps functionality it is actually using that pre-written code in

python scipy integrate sub module and it will give me the result.

(Refer Slide Time: 10:09)

So, what we will do here in our present problem square of absolute value of y function, this is the

y array as I have told before that this is going to be my y array is a square of absolute value of the

wave function. This is nothing but the probability density this is the probability density function

we are familiar with is called probability density function which is square of absolute value of the

wave function and this y array has to be integrated.

The probability density function is sampled at the points present in the x array and x array we

know that it is we have defined as -100 to +100, so it is the x grid and because we are taking x grid

to be -100 to +100 remember in this integration we have limit minus infinity to plus infinity and

will not be able to use this limit clearly, what we will use the moment we use this simps

functionality of this scipy integrate sub module, it will adopt the limit of the x grid which is minus

100 to plus 100.

So now, this is my practical numerical calculation which is going to be performed with the help of

simpson’s rule. Now python's built in functionality this abs absolute value abs will give me returns

absolute value of a given number and that exactly what we need because this is absolute square of

absolute value of the wave function and I can get this absolute value of a function by this abs which

means that I have to write abs within bracket ()x , then I get the absolute value.

So, what does it mean by absolute value? If the number is a complex number, let us say a+ib if it

is a complex number, then abs will return its magnitude which is 2 2a b+ , I will get this value.

And if the number is a real number if it is a real number for a real number abs functionality this

functionality is actually present in pythons built in function library it does not need to be imported

from other module.

So, this if it is a real number, then it will remove the negative sign of the number and that is the

way it will return. So, what we need to do is that we have to use this absolute value of ()x and

then we have to do the integration make it square and then do the integration.

(Refer Slide Time: 14:00)

So, we will now numerically implement this idea. Clearly minus infinity to plus infinity is not the

limit, for us it is going to be -100 to +100 limit the limit has been will be automatically selected in

the simps if I use sims functionality this is y then x then x grid limit would be selected as the limit

for the integration.

So, we will see that the first two lines are importing the libraries then we have to definitely create

the x grid once we have created the x grid we have to discretize the wave function we have already

seen how to do that, then these are the new steps for the normalization what and this is very simple

three steps normalization steps.

First, we will define the probability density of ()x , how we are going to define? It is nothing but

absolute value of ()x square, so it so this this part is nothing but psi x square, that is the

probability density and then we have to find out the norm, norm is going to be square root of this

integration of this probability density versus x.

So, we have we have defined this is my y array this is my x array. So, I have to first integrate it

and after the integration I have to take the value square root of that value and then we are going to

print the norm we will just double check what is the norm we are getting. So, we will move to

laptop and we have these libraries importing the libraries we are going to keep it as it is but the

plotting part we do not need because we are not going to plot it anymore instead of plot we have

to import the simps functionality from scipy integrate sub module.

So, I will write down from scipy dot integrate import simps. So, that I can use that later, so this

part remaining to be the same because we are creating the x grid first, then we are discretizing the

wave function then this plot part we do not need anymore, we have to now after discretizing the

wave function we have to now calculate the norm, and how do I calculate it? First I have to get the

probability density of ()x .

So, probability density (probe_density) just giving a name with underscores so that anybody can

understand it when is reading it later stage, so using a good name of a particular function can help

understand what is the meaning of that function, so that's the reason I am explicitly writing like

this way otherwise, one can use also y to represent the probability density function. So, probability

density function, what does it mean?

It is the absolute value, first I have to take the absolute value of psi so this is going to give me the

absolute value of psi which is another array basically it will take absolute value of each point each

element of psi and then this needs to be I have to take the square of that value each value. So,

probability density gives me another array where each element where we have taken absolute value

of each element in the array and then we have squared it.

So, norm would be defined by square root but we have not imported square root, square root is not

a mathematic this mathematical function squared mathematical function is not available with

pythons built-in library it has to be imported from scipy. So, you will be using sqrt remember many

of these functionality can be imported from numpy as well but we are deliberately not using numpy

at all we do not want to mix up the libraries we want to just keep things simple that is why we are

using always this scipy module because it is more optimized and will keep using the same module

for different purpose.

So, norm, I have to define by square root of the integration of this function, so I will use simps

then I have to use y,x, x is already defined and then I have to use print to check what is the norm I

get. So, we have to check when you are using many brackets we have to always think we have to

double check whether the brackets are in proper order or not we have two brackets here, so we

have two brackets here also and that exactly what we need should always double check.

So, if we run the program right now, then we get back the norm, norm is 1.119, we go back to the

slides we get this value for the norm, this is nothing but the value which we have used before we

analytically solve the problem and we have found that the norm has to be

1

4

2

 
 
 

. So, this is the

value which we get here numerically. We will move on and we will once we have understood that

we have been able to get the norm remaining part is very simple we have to just divide the wave

function by the norm and we get the normalized wave function.

So, this part for the normalization is quite understandable up to this far we have understood how

to get the norm and then we have to name another we are giving a name psi_norm which is

normalized wave function which is nothing but the earlier wave function psi this is the earlier wave

function which was not normalized, I am now dividing by the norm and I am getting I should get

the normalized wave function.

So, what we have done is that to make sure that we have normalized it, we can always double

check by taking this integration one more time psi if it is a normalized wave function, then this is

going to be 1. So, we are doing one more time we are taking this as a wave function normalized

wave function and checking whether we are getting norm to be 1 or not. So, these 3 steps has been

written to recheck whether we have got the normalized wave function.

So, for that we have to again take the probability density, then the integration and then square root

of that integration is going to be norm and I am going to print norm.

(Refer Slide Time: 22:39)

So, we will move to laptop and we will just we do not need to print the norm anymore we will just

keep the norm and then we will just normalize the wave function we can normalize the wave

function by writing psiNorm, this is a new name we are giving which is nothing but psi divided by

norm.

So, I have this normalized wave function remember psi norm still an array it has 2001 number of

points and this is representing an array. So, psi divided by norm it means that each element of psi

has been has been divided by the norm value. Once we get that, then we will recheck whether we

have really normalized the wave function for that will define the probability density of this

normalized wave function we are giving the pattern of naming we are keeping similar probability

density psiNorm.

So, this is going to be absolute value of this normalized wave function, what it does? It will take

the absolute value for each element of this array and then square it so this is again another array

we have prepared and then I will write norm 1 this is going to be then square root of here psi norm.

So, y array is going to be psi probability density of psi norm and then if I want to print I will write

down so I execute the program what I get back is 0.999 which is equivalent to 1.

(Refer Slide Time: 25:21)

So, I will go back to the slides, so I have this value which is equivalent to 1. So, this kind of floating

point value will make it depending on because it is a numerical integration we may not get 1 but

0.999 is equivalent to 1. So, because it is 1 the norm is getting 1 it means that the wave function

which I have right now here the psi norm this psi norm is now a normalized wave function that we

have proved and always in quantum dynamics we have to always use a normalized wave function

this is something which we have learned in this course.

(Refer Slide Time: 26:14)

We will move on and we will look at the expectation value of position. Now expectation value of

position, what does it mean? I just remind if I have a probability density distribution which is psi

x absolute square if I have this, then question is what is the mean of this or average of this

distribution. So, clearly for Gaussian probability density distribution the mean would be here this

is called the mean value, and what does it mean?

Experimentally it means that is the average of many repetitive experiments that is the average

value. So, expectation value has a direct connection to the experimental outcome because in the

experiment we repeat the experiment many times and after repeating it, if we take the average of

the outcome we get the value that value should correspond the x correspond to this expectation

value which can also be calculated from the known wave function of the system, so that is the

basic idea.

Expectation value of position is given by this in general it is given by if x is an operator, then

expectation value is going to be

2* ˆ() () ()x x x x dx x xdx  

 

− −

= = 

x,s position does not mean anything this is multiplication, multiplication does not follow any order

it can be multiplied by this way it can be multiplied by this way both side is perfectly fine.

So, but operators in general operators does not work that way, if we consider the derivative

operator if I have y z, then this derivative operator is acting only on z it is not acting on y, so

operator in general has a particular direction but position operator because it is a multiplication

operator it does not have any direction so one can position it anywhere so I have position it here

so that I can club this size star side together and
2

(,)x t ,the absolute value.

So, in the end expectation value if we want to calculate all we need to do is that we have to

construct another function, what is that function? The first function is the probability function

which is psi x absolute value square of absolute value of ()x , this is one function it has to be

multiplied by x the x is another function. So, these two functions needs to be multiplied.

Now if we think about this probability density distribution looks like this and x has x function this

function has certain way let us say this is the way x is working and if we multiply two functions

let us say these two functions are multiplying in terms of matrix or in terms of this discretized on

a grid it is nothing but multiplying each element if it is a simple multiplication scalar multiplication

then it is multiplying each element to get the final form of the total function.

So, if I multiply so this element has to be multiplied by this element and each element will be

defined by its own grid point. So, for corresponding to each grid point I have two elements for

coming from two functions and they needs to be multiplied, so each element has to be multiplied

so it is a element wise multiplication because it is a scalar multiplication.

And scalar multiplication so it is very easy to do and so in the end this is an array which will be

represented by leak this way

2

0 0

2

1 1

2

2 2

()

()

()

.

.

x x

x x

x x







 
 
 
 
 
 
 
 
 

So these are the points we get in the probability density distribution. So, this is the array we create

by this multiplication and this is the array which will be using for the integration following the

simpson’s method as an y array.

So, but the question is in python programming the scalar product of two arrays is given by element

wise multiplication and element wise multiplication can be done by just multiplication operator

which is available in python's built-in library. ,So, if I have y array and x array if I multiply then

what will happen it will do element wise multiplication each element will be multiplied by the

corresponding other element. So, y1 will be multiplied by x1 y0 will be multiplied by x0, then y2

will be multiplied by x2 and so on and then it will give me another array.

0 0

1 1

2 2
*

.

.

y x

y x

Y X y x

 
 
 
 =
 
 
 
 

(Refer Slide Time: 32:40)

So, it is very simple, so we will move forward and we will see how to get this integration done so

that i can get the expectation value this is the integration and again practically we cannot do this

minus infinity to plus infinity integration this is going to be done with the help of Simpson rule

and for that it will just pick up the integration limit as the x grid limit, so this is going to be our

integration this entire part is going to be y.

So, in the Simpson rule I have to specify y and y is going to be this part and x is the x grid over

the x grid it will be sampling the y values and then integrate it this x grid creation part is known to

us now discretization of the function is known to us then calculating the norm we have to first

normalize the wave function because this expectation value this when we write down

2* ˆ() () ()x x x x dx x xdx  

 

− −

= = 

The expectation value we assume that psi is normalized.

So, we have to first normalize the wave function to get the right expectation value so we

normalized it this part is also known. And then, little bit tricky we have made here first we have to

get the probability density of the normalized wave function that is known to us now. Then the

integrand part we will just write down this is the integrand part, so what we have done here this

probability density will be multiplied by x we get the integrand and then expectation value is going

to give me the integration part where y is this entire integrand and then we will print the expected

value expectation value for this.

So, this part is little new others are known to us, so move to the laptop and will write down the

program we have everything remaining to be the same then except for this this is x grid we have

prepared then discretize the wave function, then we have to normalize the wave function this far

we are done and then we have to find out the expectation value of the position.

So, this part will be deleted and will write down finding expectation value of position where first

we have to write down this probability density psiNorm which we need to do because after we

normalize it we have to find out the probability density and then this probability density has to be

multiplied by x so that I can create another we multiply by x.

And then expectation value is expectV which is represented representing the expectation value

expectation value we get from this integration and in this integration y has to be this integrand and

then we are going to print the expectation value. So, if we execute the program we get minus we

go back to the slide we get -6*10-18 which is almost equal to 0, it is the 0 position and that should

be because e to the power our wave function was e to the power minus x square this is a Gaussian

function which is centered at x equals 0.

A Gaussian function which is centered at x equals 0 is having this form but if I want to change the

Gaussian function to be centered at different place then I have to write x minus a whole square if

I do that then Gaussian will be centered at position a and that will prove here.

(Refer Slide Time: 38:14)

We will move to laptop I will just change this the definition of this Gaussian function, according

to this definition which I have used right now, this is centered at x equals 0 now I will center it at

x equals let us say 3, x minus 3 that is why I am writing and once we do that then we will see that

will check what is the expectation value we have, expectation value we get 3.000 which is close

to 3. Numerically we get some error always and we have to deal with this kind of error but this is

3 we are getting.

So basically, what we are seeing is that center of the Gaussian is representing the expectation value

of the position and that is now 3. If I change 3 to 10 I will see that expectation value I will get 10

instead of 10 I get 9.999 which is equivalent to 10 numerically. So, what we see here is that the

for a Gaussian function the center of the Gaussian is actually represented by the expectation value

of position that we have seen before also. And one can do analytically one can one can perform

analytical integration for this with the help of this kind of function to check whether really

expectation value would be at this value this the at this parameter which we are using.

So, we have come to end of this of this course, end of this module this python tutorial 2 where we

have learned how to represent the wave function in the computer programming with the help of

python and then how to normalize the wave function that is very important step because in every

quantum dynamics problem will be normalizing it and first we have to normalize it and then we

have to move forward and then we have learned how to get the expectation value. We will stop

here and we will continue learning time dependent quantum chemistry in this course in the next

module and next tutorials.

