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Welcome back all of you. Since last two or three classes, we started discussing about some of the

practical  considerations  that  we need  to  look  into  while  recording  the  NMR spectrum.  We

discussed a lot about how to choose the spectral width, how to choose the offset, what is single

channel detection, what is quadrature detection, how do you tune the magnetic field, how do you

shim the magnetic field, what type of sample you require, how do you choose the spectral width,

how do you caliber  a  90 degree pulse,  all  those things,  we discussed in depth.  Now let  me

assume you have understood everything, and you are now in a position to record the spectrum.

You have collected  the  time  domain  data  and now you are  in  a  position  to  do  the  Fourier

transformation and start processing the data. Of course, I already showed the spectra and I said

you can do the Fourier transformation and you got the spectrum. But little bit deeper we can go

now and see how we can process the data. This is our focus on NMR data processing.

(Refer Slide Time: 01:42)

There are certain practical considerations in getting the spectrum and while processing the data.

Of course,  we should  know we have to  do  the  Fourier  transformation  and after  getting  the

spectrum, sometimes we use window functions. What are these window functions, why are they



used, we will discuss. And we can manipulate time domain data either to achieve sensitivity or

the resolution or both,  we can manipulate  this.  So these are  some of the points we need to

discuss. 

(Refer Slide Time: 02:21)

Let us start with Fourier transformation. Of course, we have been discussing even from the early

classes, first, second or third class itself, we discussed that time domain signal can be converted

to frequency domain by a mathematical operation called Fourier transformation. Then I said time

and frequency are Fourier  pairs.  So this  is  the  formula for converting  the time domain into

frequency domain. You collect the signal as a function of time, and do this mathematics and then

you will get all the frequencies present in that.

Of course, you can do the reverse also. If I have a frequency domain signal, I can do inverse

Fourier transformation and get the time domain signal.  These are interchangeable.  These are

called Fourier pairs. Exactly what we do in NMR, is same. As I have been telling you, in NMR

we collect the signal in time domain, which I referred to as free induction decay. You apply a

radiofrequency pulse and then in the absence of the pulse, magnetization starts processing freely.

While processing, it induces EMF in the receiver coil,  which you collect and it is a damped

oscillation, the signal starts decaying, which we said is free induction decay. And we collect this

as a function of time, which we saw even in the last class, and several other classes and we do

the Fourier transformation, now we are going to get a frequency domain spectrum.



(Refer Slide Time: 04:13)

This is what it is, all about NMR. You collected the signal in the time domain like this, what

happens in the time domain is the signal intensity varies with time as a function of time, it is a

damped  oscillation.  Now  the  Fourier  transformation  of  this  gives  you  peaks  with  varied

intensities. This may have an intensity like this, other may intensity like this, other may have a

small intensity, does not matter.

Finally,  what  happens in  the  time domain,  it  is  the  variation  of  the intensity  of  signal  as  a

function of time. Here it is the variation of the intensity of the peaks in the frequency domain. So

that is what is all about. So basically, you do not know anything. All you do is simply collect the

signal and give a simple command called Fourier transformation in the instrument, and computer

is going to give you the spectrum like this. This is what you finally require for doing the analysis.
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Now let us see, what happens to the magnetization. We will discuss little bit about components

of the magnetization. Now if the magnetization M0 is brought to the transverse plane by applying

a 90 degree pulse, which we already knew, how to calculate 90 degree pulse. I am applying a 90

degree pulse, brought the magnetization to xy plane. Let us say, I am going to bring it in this x

axis. Now we have x and y components of this. 

Remember this magnetization is a vector. We can resolve into two components. Look at this one

here, the precision, how it is undergoing precision. The magnetization is here, starts going like

this, starts going like this, starts going like this. So you can resolve them into two components,

Mx component and My component, that is the cosine and the sine component. We also discussed

this in the previous class. We call it as real and imaginary and after Fourier transformation. I said

it is an absorptive and dispersive type peaks. So, the detected signal here, the time domain signal,

we can resolve them into two components cosine and sine, real and imaginary components. This

we  can  represent  by  a  simple  equation  like  this.  This  we  already  knew  earlier  also.   An

oscillating wave with an amplitude and frequency is always represented like this.

Now Mx component of this, I represent as M0Cos ωt. What is M0? M0 is our magnetization,

which is in thermal equilibrium. The magnetization before application of the pulse, which was

along z axis. That is considered as M0. Now this M0 has two components, MX correspond to

cosine component, which is written as M0Cos ωt;  where omega is the frequency. My = M0Sin

ωt, this is simple. I think you all know; we can resolve this magnetization in two components.



(Refer Slide Time: 07:42)

Now the signal that is detected in the time domain is proportional to this magnetization. What is

the amount of magnetization present in the x axis or in the y axis, or the components of the

magnetization? That is what the signal we are going to detect. This we saw earlier also. Let us

say, the Sx is the signal in the x axis. I call it as S0Cos ωt. 

M0 which is total magnetization. Now I am taking signal in the time domain; Sx of t corresponds

to S0Cos ωt. The same y component signal in the y axis, as a function of time is S0Sos ωt.  But

the total signal St is the sum of Sx(t) + Sy(t), like M0 = Mx(t) + My(t); earlier in the previous

slide we saw. 

Now what I am telling is when the signal which we are collecting the time domain, S(t) can be

resolved into two components, signal along x axis and signal along y axis collected as a function

of time. So total signal is sum of Sx(t) + Sy(t). This is the total signal that we are collecting. This

is FID.  Now we know what are Sx and Sy.  The Sx = S0Cos ωt and Sy = S0Sos ωt.   Plug in

these terms here. The total signal is written as S(t) is equal to this thing. Now you can express

this as an exponential. This is the basic trigonometry; you would have studied in the early days.

Now combining these two, we can write as St = S0 exp(iωt). So, the transverse magnetization

decays with the time constant T2. It  is  the signal,  which we are collecting,  but how are we

collecting it.  It is also decaying, you know that.  I said there is decay constant;  it  is damped



oscillation; and we already discussed earlier that decay of the magnetization in the transverse

plane is called T2; spin-spin relaxation time.

We already  discussed  this.  It  is  a  relaxation  time  in  the  transverse  plane.  That  is  the  total

dephasing time in the xy plane,  the transverse plane. So this has to happen, it  is a decaying

function. So plug it in.

(Refer Slide Time: 10:41)

Since it is a decaying signal, of course when you do the Fourier transformation, you are going to

get a Lorentzian, that is the first part. Now when you do the Fourier transformation, you get

absorptive Lorentzian as a real part and imaginary part is called dispersive Lorentzian. Apart

from that now first you plug in the decaying component, the exponential function, this we knew.

We are collecting the signal; you plug in e(–t/T2). This we are plugging in because we know signal

is decaying as a function of T2. 

Now what it is going to tell us? What happens if T2 is shorter? Signal decays very rapidly. If the

T2 is long, longer the T2, the signal takes more time to decay. That is the physical explanation

here. Look at this term. So this decay term depends upon T2. So you can talk about the decay of

the signal in terms of T2.

(Refer Slide Time: 11:53)



Before you proceed further, since we are doing Fourier transformation, I want to tell you few

functions. You just remember,  you can work out, because we knew the equation for Fourier

transformation,  I  told  you  know.  So  I  have  given  you  already  the  equation  of  the  Fourier

transformation. You can use that, like f of omega is equal to integral of minus infinity to plus

infinity f(t) eiωt dt, that you wrote already. I showed you in 2-3 slides before. 

You can plug all  these functions, whatever  you want.  If you know what is the time domain

function and if you know the boundary conditions of the function, you can work out and find out

the Fourier transformation. You can do the Fourier transformation of all the functions. Let us

say, I have a single sine or cosine function. Of course, this is a cosine function; and this is the

sine function, starting from the origin.

If I do the Fourier transformation of these functions individually, we get a delta function. Where

does it come? you can calculate the frequency from the separation. This is lambda, you know

that, inverse of that is the frequency. So you can find out, the oscillation frequency and it is a

delta function. I am just giving you the information. Please remember, because we will be using

Lorentzian, Gaussian, etc., after the Fourier transformation.

On the other hand, let us say, I take an exponential decay function. If it is exponential decay, like

we  saw in  the  previous  slide  or  signal  it  is  decaying  exponentially,  if  you  do  the  Fourier



transformation,  you must get the Lorentzian.  This is the important thing, and this Lorentzian

function is a spectrum like this, you get. Now you can calculate the full width at half maxima,

this is one. This is given by 1/ω.

If it is exponential omega t, this full width at half maxima is given by 1/ω. This is an exponential

function. NMR signal, what we detect in the solution state is an exponentially decaying function.

So the frequency domain spectrum is a Lorentzian.

(Refer Slide Time: 14:20)

Of course,  you should  know;  this  we come across  very  often.  We already  discussed  in  the

previous class while discussing something about FID truncation. So this is like a square pulse or

a rectangular pulse. Depending upon the width of this, if you do the Fourier transformation, of

course,  you get  a sinc function.  This  is  called a sinc function and the zero crossing here is

inversely proportional to this width. If this width is t, the zero crossing is equal to here -1/t, here

+1/t. See this is Fourier transformation of a rectangular function.  Conventional 90 degree pulse,

what you use in NMR is a rectangular pulse depending on the width or you can call it a square

pulse, but the frequency spectrum is a sinc function. Please remember, these are some of the

things, which you must remember; you can work out, by mathematics. I do not want to work out

each and every function, do the Fourier transformation and show you what it is. But I am just

giving you what is the starting function in time domain; what you get in the frequency domain?

If I take a Gaussian, that is Gaussian function and do the Fourier transformation, interestingly



you get in the frequency domain also a Gaussian function. We come across this very often when

we do the selective pulses, where only a single spin is selectively excited in the ensemble of

spins, I can selectively excite a particular spin or band of frequencies. Then, I tell you we come

across a thing that is why I am giving you this information.  If I say it is a Gaussian function, the

Fourier transformation of that is also a Gaussian.

(Refer Slide Time: 16:19)

We also come across what is called as periodic delta function. What is delta function? It has no

width and it has infinite intensity at particular frequency 0, and its value is 0 on anywhere at any

point outside the 0, this is a delta function. And many such periodic delta functions is called a

comb function. And this comb function, how often it repeats is given by T, and interestingly, the

Fourier transformation of this is also a comb function, with period 1/T.

This  is  what  the  reason for  high frequency peaks  appearing  with low frequency end of  the

spectrum and vice versa if we do not obey Nyquist theorem. You understand.  Remember what is

the periodic function? It is a comb function, and it transforms into a comb function with period is

equal to 1/T.

(Refer Slide Time: 17:25)



With that, we will come back to our expression, S(T) we detect in the xy plane, is like this. Both

x and y axis combined together, expressed as an exponential function, and we have incorporated

the decay function because of T2 damping oscillation. Now Fourier transformation of this signal

gives  the  frequency  spectrum,  with  cosine  part  as  pure  absorptive  and  sine  part  as  pure

dispersive.  Look at it. This is called absorptive spectrum.

This is called dispersive spectrum, and at the center of this, you are going to get frequency of the

oscillation. And at the center of this here, at the 0 crossing point, you get the frequency from the

dispersive spectrum. Simply remember, a decaying function, which you collect in NMR, when

you do the Fourier transformation, you get two types of peak. This is called the real part. This is

called the imaginary part. It is called absorptive signal. It is a dispersive signal.
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Now I said, this has a function exponentially e(–t/T2). Now I also said in the Lorentzian it depends

upon full width at half maximum, which is equal to 1/ω I said.  Remember, in one of the slides I

said e(–iωt), somewhere here I said, you know. Then the transverse magnetization decays with a

time  constant  T2,  not  here,  somewhere  I  said.  It  is  here,  its  full  width  at  half  maxima  is

determined by inverse of that frequency.

So now we are seeing here, e(–t/T2), so we can get the inverse of that line width. If I know what

this line width is, I know what is the decay constant. This T2 I can get it. The full width at half

maxima of this absorptive signal is given by 1/πT2. So if I know this, I know approximately or

more or less precisely what is T2. What does it mean? I can approximately calculate this spin-

spin relaxation time. If I have a broader signal, what does it mean? If I have a broader signal,

signal is decaying very fast. If I have a sharper signal like this, if the full width at half maxima is

very small, we get sharp signal. That means the signal will be decaying for a long time. Look at

here, FID is dying down very fast. As a consequence, if you collect for a short time and do the

Fourier transformation, you have a larger line width. So the width of this spectrum, full width at

half maximum, inverse of that will give you T2. That is spin-spin relaxation time. 

Remember this, if you do not understand anything, at least please remember faster the signal

decays in the time domain, broader the signal the frequency domain. If decay is very fast, it gives

a broad signal. If decay is very slow here, it gives a sharp signal. So I told you, in 1 or 2 classes



while doing the shimming, you have to ensure that signal decays very fast. You get a lock signal;

you have to use the lock signal to tune the homogeneity. When you are shimming using the shim

coils, finally you get a better homogeneity. Essentially you will see that free induction decay will

be decaying for a longer time. Longer the time it decays, sharper is the signal in the frequency

domain. But remember whatever may be that, signal may be broad or sharp, do not get confused,

nothing is happening. The area of the peak remains same. The area will not change, whatever

happens, the area of the remains same. So you can still integrate the signal and know how many

protons are present in each peak.

(Refer Slide Time: 21:51)

Remember while analysis we discussed this. The area of the peaks will tell us the number of

protons present in that peak, you can compare relatively with some other peak. If I know the

peak, which has only one proton, relative to that you find out the area of the other peak, then you

find out how many protons are present.

Remember, I gave the example of proton count with integral intensity with a couple of examples

earlier. So that means, you can still continue to do the integration irrespective of the fact whether

the peak is sharp or broad, area remains same. It will not change; and still you can find out the

number of protons present in each of these peaks.

(Refer Slide Time: 22:42)



Let us now start questioning a bit more. So far, I took only one signal, one decaying frequency to

understand different components of it, etc. In reality, the NMR spectrum only one signal will not

be there. FID may not contain a single frequency. There may be so many peaks in the spectrum.

There will be a lot of frequencies. Many frequencies will be there. Then the question is what

happens if you have many frequencies in the spectrum? How does it work?

Let us say, we have three frequencies in time domain. We have worked out this example. Signal

S0 as a function of St as a function of T2, it is decaying, we wrote this expression. Now let us

say, this is for frequency 1. I have another time domain signal with a frequency omega 2, one

more peak is there; and one more peak is there. Thus, let us say, three different types of time

domain  signals,  each  of  them with a  different  frequency and having different  T2.  They are

decaying.

If I have a single frequency, we saw a single oscillatory signal. When all the 3 are, there could be

many more, then you are going to see the time domain signal as an interferogram. Now the

question is, if there are many such FIDs, many such time domain signals, how does each of the

signals contribute to FID.

(Refer Slide Time: 24:32)



Also, one of the important point to remember is Fourier transformation is a linear process and the

frequency spectrum is the sum of Fourier transformation of individual time domain functions.

There are 3 FIDs in the time domain corresponding to 3 frequencies, which were present. Do the

Fourier transformation, we will get 3 frequencies. Now in the realistic NMR spectrum, there will

be N frequencies present. You have N decaying signals, each with a different T2, no problems.

Each of them would have a different T2; they are all decaying signals. Collect them. It is an

interferogram, you do not know. It is a mixture. Do the Fourier transformation,  you will get

individual frequencies; N individual frequencies. So it does not matter. The explanation which

was given for a single FID holds good, even if the time domain signal has a superposition of

several frequencies.

Finally,  do  the  Fourier  transformation.  That  being  a  linear  process,  you  are  going  to  get

frequency domain spectrum with as many number of frequencies, which are present in the time

domain signal.

(Refer Slide Time: 25:51)



Now we have to do what is called phase correction in the frequency domain. We discussed about

pulse phases and phases of the signal. In the previous class and earlier also, we discussed this 2

or 3 times.

(Refer Slide Time: 26:10)

Now let us see the appearance of the spectrum, how it depends? Remember, I am going to apply

a radiofrequency pulse and bring the magnetization here.  Immediate or instantaneously, the spin

vectors all of them are in coherence. I have to start collecting the signal immediately, without

any time lapse. If there is a time lapse, what happens? Some problems of phases will come into

picture. So the appearance of the spectrum depends on the position of the signal at time T = 0.



Immediately after the pulse, the time is equal to 0, you have to start collecting the signal. If pulse

is applied here; give some delay and start collecting the signal here. We get into phase problem.

So  you  have  to  literally  or  in  principle  start  collecting  the  signal  immediately  after  the

application of the pulse at time T = 0.  If the starting point is different, we have what is called the

phase errors in the sinusoidal function. Now we will incorporate this one here.

This is this thing, we are going to get as the time domain signal. This I knew, I told you already

and if you incorporate this for a decaying function. Now let us say, there is a phase error, that I

incorporate here. This is the phase component. The phase term I am going to introduce here to

the signal. So the total signal is; this is because of the phase term which is introduced, and the

decaying signal as a function of T2; and this is signal collected from the NMR sample. So this is

the total signal, including the phase error, that is already present. 

(Refer Slide Time: 28:05)

Now you know why the phase error comes. I will not go into this in detail, because we discussed

this earlier also. Now if my signal is detector is here, if the signal is along x axis, I told you, we

have a real part, which is absorptive, imaginary part, which is dispersive. Both of them are out

exactly out of phase by 90 degree. You collect a real absorptive spectrum without any phase

error. See there is no phase error.



The angle difference between cosine and the sine part must be exactly 90 degrees. In case, if the

signal is not along x axis, it is somewhere at a different place. Then what happens? There is a

mixture of phases here. See the real component is not pure absorptive and the imaginary part is

not pure dispersive. You get into a mixture of phases in the spectrum. This is what happened, and

we saw what happens if the magnetization is along y axis or –x axis. You can even see if it is

along –x axis, real and imaginary components gets interchanged. When your detector is along x

axis, signal is along –x axis, we will get a real absorptive peak, which is negative maximum. So

this is how you should know about the phases of the signal depending upon the pulses.

(Refer Slide Time: 29:46)

So let us say, there is no error, but generally there will be error. So phase error comes in all

possible angles, including intermediate between absorptive and dispersive; that is what I said. At

45 degrees, you have a mixture. It need not be 45 degree, it can be any angle. If they are not

exactly out of this by 90 degree, let us say, there is a phase difference of 85 degree, 80 degree, 70

degree, different angles will be there between cosine and sine.

Accordingly, our signal intensity, signal if you look at it, they have different phases. Let us say,

this is a perfect signal, on resonance. There is no difference. There is no phase error, and cos and

sin components are exactly out of phase by 90 degree. The phase error is 0. You can go on either

side. I showed you the signal it can be in the first quadrant or the fourth quadrant. So you can

have phases, both positive and negative.



It can go like this, if the phase error is 45, 90 degree, 135. If the phase error is exactly 180

degree, you can get a negative signal, that is what we saw. Our detector was along x axis, the

magnetization was along –x axis. I said real and imaginary gets interchanged. Real part  is a

negative absorption; that is what I said. Same thing happens, if you go on other side. So the

phase errors can come in all possible angles. This is a very important thing.

Now how do you correct the phase. This is a phase error. And it can be frequency dependent and

frequency independent, both types of phase errors are possible. We will discuss that now. But

how do you correct it? The phase correction is nothing but your real component and imaginary

component, you have to adjust it, electronically or you can do in the instrument, in such a way to

ensure, that these 2 components are exactly out of phase by 90 degree. In which case you will get

pure absorptive spectrum like this  without  any phase error.  So what  do you mean by phase

correction? It is you are going to ensure that real and absorptive part of the signal have exact the

phase difference of 90 degrees. That is what is all about phase correction. We can discuss more

about  phase  corrections  and manipulation  of  the  time  domain  data,  how we  apply  window

functions, everything in the next class.

Right now, I am going to stop here. Today, of course, I started telling you about the processing, I

introduced to you Fourier transformation. I explained to you what happens when there are many

signals  in  the time domain,  many time domain  signals  overlapped,  what  happens  if  you do

Fourier transformation. I said you will get that many number of frequencies in the frequency

domain, because Fourier transformation is a linear process.

And also gave many examples of how phase errors can come and what will happen to Fourier

transformation for different types of functions. Many, many things we discussed today. We will

continue our discussion tomorrow on processing of the data.


