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Welcome back to Module 2. We are continuing Module 2 to understand the effect of

different  pulse  shape  on  the  time  bandwidth  product.  We  have  to  calculate  time

bandwidth product depending on what kind of pulse shape we consider.

(Refer Slide Time: 00:51)

So far we have considered the Gaussian pulse, then we have considered a rectangular

pulse.



(Refer Slide Time: 00:56)

And we can just continue the way we are thinking. We can also assume hyperbolic sech

function like this and hyperbolic sech function which is also centered at t equals 0 as an

envelope to represent the ultrafast pulse and many other envelop functions can also be

used as shown here.

So,  the  Gaussian  pulse  envelope,  then  hyperbolic  sech  function,  lorentzian  function,

asymptotic sech functions, hyperbolic sech function, many other field envelopes. So, one

can assume depending on the field envelope following similar mathematical formulation

and get the time bandwidth product for a particular pulse shape. Here, we see that the

envelop functions do not differ significantly if we change Gaussian to let us say sech

hyperbolic,  except  for  the  wing  of  temporal  profile  of  the  pulses.  We  see  a  major

difference here in this wings but in the spectral profile we see a major difference all over

the spectrum.

So,  depending  on  the  experimental  spectrum  and  experimentally  measured  intensity

profile, one can assume a certain intensity profile or assume certain field envelop profile

to represent the ultrafast pulse.



(Refer Slide Time: 02:37)

We will continue for the sech hyperbolic function and which can be represented by this

and it can be shown easily that the time bandwidth product for transform limited sech

hyperbolic pulse, it can be given by delta nu delta t equals 0.315.

So, we will try to find out how we get this number. We know that this sech hyperbolic

function is centered at t equals 0. So, if this electric field looks like this, then intensity

profile can be written as shown in slide and from the definition of the pulse width we

know that is intensity profile, then I get the half maxima when t equals delta t by 2.

(Please look at the slides for mathematical expressions)

So, from the definition of full width half max of the intensity profile I get I max equals I

naught divided by 2 which is the maximum intensity divided by 2 which is nothing, but I

at t equals delta t by 2. If I plug that in I get I naught sech hyperbolic square a delta t by 2

or in other words, half equals sech hyperbolic square a delta t by 2. (Please look at the

slides for mathematical expressions)

Or I can write down delta t equals 2 by a inverse of the sech hyperbolic function 1 by

square root of 2. So, this expression will keep it for future will write it down. On the

other hand if we have time domain field, I can also express frequency domain field in a

following way, but the Fourier transform of the time domain field is shown in the slide.

Procedure is the same. Mathematics can be little different. (Please look at the slides for

mathematical expressions)



The standard Fourier transform goes like this. If I have f(x) a hyperbolic function; then

the Fourier transform is shown in the slide.

So, we can use the standard integral here. So, if we get the field in the frequency domain,

then I can get the power spectrum in the frequency domain which is S omega nothing,

but equals E omega multiplied by E star omega that we have to calculate. (Please look at

the slides for mathematical expressions)

(Refer Slide Time: 07:46)

And  if  we  calculate  that,  then  we  get  S  omega.  (Please  look  at  the  slides  for

mathematical expressions)

Again this is centered at omega naught just like a Gaussian function. So, from full with

half-max definition, we know that we can get the half of its maxima where omega equals

omega naught plus delta omega by 2. So, I can write down S naught divided by two-half

of its maxima. We obtain when S omega equals omega naught plus delta omega by 2

which is nothing, but S naught square of this hyperbolic function pi. (Please look at the

slides for mathematical expressions)

Now, omega I have to plug in this one omega naught plus delta omega by 2, that is my

omega minus omega naught  divided by 2 a.  So,  this  omega naught  cancels  out.  So,

finally I get pi delta omega divided by 4 a or in other words, delta omega if I rearrange

this equation, we get 4 pi sorry 4 a by pi sech hyperbolic inverse 1 by square root of 2.



So, I have delta omega expression, in the previous slide I had the delta t  expression

which was 2 by a sech hyperbolic inverse this. So, to get time bandwidth product I just

multiply delta t delta omega I get 2 by a multiplied by 4 a by pi 1 by square root 2 whole

square. (Please look at the slides for mathematical expressions)

If we simplify, then I get delta t 2 pi delta nu which is nothing, but 8 by pi. So, after little

bit of calculations as shown in slides, we get hyperbolic sech function time bandwidth

product is going to be 0.315, which is different from a Gaussian pulse or a rectangular

pulse.

(Refer Slide Time: 11:22)

This table here is showing time bandwidth product, this CB is time bandwidth product of

different pulses. If it is a Gaussian pulse, it is 0.441, if it is a sech hyperbolic function, it

is 0.315 and for many other line shapes we have different values. We have to remember

that we have to assume a pulse shape first, then corresponding time bandwidth product.

We should not mix these numbers.



(Refer Slide Time: 12:11)

For delta nu, delta t if we assume that it is a Gaussian pulse, then I can write down this

time bandwidth product for a transform limited pulse and often we need to convert this

equation to the wavelength or wave number and we would like to know how we can

convert it. So, this delta nu can be written we knew that nu equals c by lambda which is

nothing,  but  c  nu  bar  which  is  the  wave  number.  (Please  look  at  the  slides  for

mathematical expressions)

So, delta nu can be converted to wave number with the help of this expression. On the

other hand if we have to convert it to wavelength, then we have to write down delta nu

equals  c  by lambda square delta  lambda is  coming from this  expression.  There  is  a

negative sign here, but we are omitting it. We are just considering the magnitude of this.

So, these are the Conversions. We should remember if we want to convert delta nu to its

wave number, this is the equation and if we have to convert delta nu to delta lambda,

then  this  is  going  to  be  the  expression.  (Please  look  at  the  slides  for  mathematical

expressions)

So, now we plug that in and we convert it to wave length as shown in slide. This lambda

in this equation is going to be center wavelength,  we call  it  800 nanometer,  pulse is

going to be 800 nanometer.

So, what we see is that delta lambda delta t will depend on its center wavelength which

we have not seen before in the time bandwidth product.



(Refer Slide Time: 14:58)

So, we can use these expressions and we can take an example of 100 femtosecond pulse.

We can consider 100 femtosecond pulse at 800 nanometer. We know the meaning of it.

Now, 100 femtosecond pulse it means that it is the full width half max of the intensity

profile of the pulse center wavelength is going to be 800 nanometer.

So, if it is 100 femtosecond pulse at 800 nanometer centroid, 800 nanometer, then delta

lambda can be calculated with the help of that expression 0.441 multiplied by lambda

square divided by c which is nothing, but 0.441 multiplied by 800 multiplied by 10 to the

power minus 9 square divided by 3 into 10 to the power 8 meter per second multiplied by

delta t. (Please look at the slides for mathematical expressions)

So, finally this will give me a meter and if we use the calculator, we will be able to

quickly get 10 nanometer. Please check with the calculator whether these numbers are

correct. So, delta lambda the bandwidth in the wave length for a 100 femtosecond pulse

at 800 nanometer is going to be 10 nanometer.

So, what does it mean? It means that I have center wavelength 800 nanometer, but its

width is plus minus 5 nanometers. So, this is going to be 805 nanometer and this is going

to be 795 nanometer. So, this is the spread of the spectrum which we see. On the other

hand for the same pulse if we have to express this is in nanometer. Now we want to

express in wave numbers centimeter inverse in many occasions we have to use these

conversions to understand the spread. That is why it is instructive to take an example.



So, we know that this same expression can be re-written as delta nu bar delta t equals

0.441.  We  are  assuming  that  we  have  Gaussian  pulse.  If  if  we  assume that  it  is  a

hyperbolic sech function, then this number will be different, but if we assume Gaussian

pulse, then this delta nu bar is going to be 0.441 divided by c multiplied by delta t. We

can plug that in all the numbers 0.441 divided by 3 into 10 to the power 10. (Please look

at the slides for mathematical expressions)

So, what I get is 147 wave number. Please check that number with a calculator. So, what

we see is that now if we plot it in the wave number regime, then delta nu bar thus the

width of the spectrum is going to be 147 wave number and if it is delta lambda, then it is

going to be 10 nanometer. So, with this one can convert to different representations for

the time bandwidth product.

(Refer Slide Time: 19:08)

So, what we have seen so far is that we have discussed different characteristics of an

ultrafast pulse. In this module we have discussed how to calculate the frequency spread

for  a  particular  pulse  or  frequency  content  of  a  particular  pulse  from the  temporal

duration or in other words, if I want to achieve a certain pulse duration what are the

frequency components we need that we have discussed and when we have discussed all

these characteristics  of the pulse,  we have always considered that  I  have an isolated

pulse.



Now, isolated pulse in any experiment will propagate through the medium. We use lens,

we use crystal, we use wavelet,  all of these materials are of dielectric nature. So, we

should understand the propagation of the pulse through the dielectric medium. Mostly

two  effects  we  observed.  When  an  ultrafast  pulse  propagates  through  a  dielectric

medium,  the  high  intensity  effect  and  large  bandwidth  effect.  When  you  say  high

intensity effect we can consider 100 femtosecond pulse again.

And each pulse contents let us say 100 micro joule energy. So, with this 100 micro joule

energy, now we can calculate peak power. The peak power is going to be the peak power

is going to be can be written as 10 to the power 9 joule per second. One can calculate it

quickly with the help of peak power equation and if it is focused to let us say 200 micron

diameter spot size, if it is focused to that, then what I get is peak intensity at the point

where it is focused that peak intensity is going to be almost 10 to the power 13 Watt per

centimeter square.

This high peak intensity if we considered sunlight peak intensity in a brightest day is

going to be point let us say less than 0.1 Watt per centimeter square. So, we can compare

sunlights peak intensity and the peak intensity we one can achieve from an ultrafast pulse

with a moderate energy. This 100 micro joule is pretty low energy, but very frequently

used in the ultrafast laser spectroscopy lab.

So, which suggests that if we have a moderate energy pulse, that pulse can give me peak

intensity of the (Refer Time: 22:11) 10 to the power 13 Watt per centimeter square. It is

a  huge intensity  and because of that  intensity  we get polarization,  we get non-linear

effects. So, these are all you know related to the non-linear effects. On the other hand, if

we  look  at  the  large  bandwidth  effect  we  know  that  there  are  many  frequency

components traveling through the medium and it may so happen that the red component

are facing different velocity than blue component and that is why they will spread out.

So, always due to large bandwidth,  due to dispersion the pulse duration will  always

elongate as compared to the due to that dispersion.

So, these are the two effects  which will  experience  when the pulses are  propagating

through the medium. We have come to the end of this module and will discuss all this

high intensity effects and dispersion effects in the next modules. What we have studied

here in this module is to how to represent an ultrafast pulse mathematically and how to



get  different  characteristics  of  the  ultrafast  pulse  with  the  help  of  mathematical

formulation.  These  mathematical  formulations  defines  different  terminologies  like

bandwidth  products  like  pulse  duration,  bandwidth,  Gaussian  pulse  hyperbolic  sech

functions all these terminologies will be frequently used in this course. We will meet

again for the next module.


