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Welcome back, we are continuing module 2. In this module, we have emphasized that

electronics are way too slow to measure both fast electromagnetic oscillation as well as

intensity profile.

(Refer Slide Time: 00:47)

If we try to measure a pulse with the help of electronics, then what might happen a time

sensitive detector emits electrons in response to photon.

Let us consider a photodiode whenever I shine light on it, it will give me an electrical

response and that electrical response can be monitored with the help of an oscilloscope.

Time sensitive detectors include photodiodes including photodiodes and photomultiplier

tubes; they are way too slow that we have already pointed out. They have very slow rise

and fall times and that gives you the response time which is nanosecond. 

So, the whole procedure how long does it take to capture the light from here and plot it in

oscilloscope, this whole time scale is going to be 1 nanosecond. Let us assume there is 1

is nanosecond. Therefore, if I have a pulse of 100 microsecond duration then with the

help of electronics, I will able to see 100 microsecond pulse I will be able to plot it.



Because for an 100 microsecond pulse electronics  is faster and I can plot  it  for 100

nanosecond pulse I can plot it and I can see 100 nanosecond.

But if I shine femtosecond pulses to the photodiode let us say 100 femtosecond pulse is

going to the photodiode then what will happen, photodiode and oscilloscope both will

show me a pulse of 1 nanosecond that is all. And this is a big surprise electronics cannot

measure the variation of 100 femtosecond variation of the profile; it will just give me a

slow response of its own which is nanosecond response. So, any femtosecond pulse we

try to monitor with the help of electronics that will become broad electronic response in

the oscilloscope.

We  cannot  just  measure  the  intensity  profile  with  the  help  of  photodiode  coupled

oscilloscope, but if it is nanosecond pulse I can measure; because the response time is

equivalent to the nanosecond. Slow detectors I have already pointed out will measure

time integrated intensity. So, this signal if it is a slow detector, then what I will get is a

time integrated over minus infinity to pulse infinity I(t) dt this is what I will measure and

this is nothing, but energy content of each pulse. What I measure is basically can be

connected to the energy pulses. Does detector output voltage is proportional to the pulse

energy only. (Please look at the slides for mathematical expression)

The slow response time of available time sensitive detectors does not permit us to make

time  domain  intensity  profile  measurement  of  ultrafast  pulse.  We  cannot  measure

femtosecond or picoseconds pulses with the help of the electronics.

We have to use the pulse intensity profile to measure its own intensity profile and this is

this  kind of measurement  is  called intensity  auto-correlation  measurement.  So,  let  us

consider 100 femtosecond pulse, what I have to do? I have to use this profile to measure

another 100 femtosecond pulse. I am correlating this pulse with this pulse that is why it

is call correlation measurement and this is the only way one can measure an ultrafast

pulse with the help of slow detector. Then we do not have any issue we have a slow

detector,  but  we  are  correlating  with  two  short  pulses  and  get  this  autocorrelation

measurement.

One of the simplest technique by doing autocorrelation measurement is that we can use

50-50 beam splitter this we will study very soon in the pulse measurement content in the

context of pulse measurement. I can have 50 50 beam splitter which will split the beam



by 50 percent of its parent intensity and then I can reflect back and then I get this two

pulses. 

Now depending on the path length difference between these two arm, this is more like a

Michelson interferometer and depending on the path length between here to here. This

path length difference will decide what is the delay between two pulses? If I use a bbo

crystal and produce 800, 400 nanometer from 800 nanometer pulse.

I can check the energy with photometer, I can plot this energy as a function of tau of 400

nanometer beam, and I can get points at different delay and this is a profile which is

called autocorrelation profile that can be directly connected to the intensity. So, this is

our way to measure the pulse direct measurement. With the help of electronics it is not

possible.

(Refer Slide Time: 06:34)

We have seen that a Gaussian envelope can be used to represent an optical pulse field

envelope that, we have seen. We will draw one more important concept that we should

remember if I plot a pulse I will plot it like the dotted line is the field envelope and this

green line is the carrier wave oscillation, and this blue line is representing the intensity

profile of the pulse which is similar to the field envelope profile, but they are slightly

different. And whenever we say pulse duration, we have to remember it is the full width

of max of the intensity profile. This delta t is a pulse duration contain the full width of



max of the intensity profile. So, now, this is representing an isolated propagating pulse

and this Gaussian function representing the envelope function.

Intensity can be given by this because I which is EE*. We have seen already in this

module that this is the expression which is valid for the intensity profile and then we can

always get Fourier transform of this time domain pulse to get the frequency domain. So,

which means that I can get Fourier transform of this time domain pulse and I get the

frequency domain. And once we get the frequency domain field, then I can again take the

power spectrum. 

So, if you look at this two pulses, the intensity profile is centered at equals 0. This is t

equal 0 profile looks like e to the power minus 2 at square. (Please look at the slides for

mathematical expression)

On  the  other  hand  corresponding  spectrum  after  Fourier  transform  corresponding

spectrum which we measure is S omega[S(ω)] not E omega[E(ω)]. S omega when you

measure is also Gaussian. A Gaussian Fourier transform is another Gaussian, but it is

centered  at  omega  naught  now.  We  have  to  remember  that  the  expression  for  this

Gaussian is going to e to the power minus omega minus omega naught whole square by

2  a.  So,  the  expression  we  get  for  the  spectrum has  different  positions;  one  of  the

spectrum is centered at omega naught and temporal intensity profile is centered at t equal

0. (Please look at the slides for mathematical expression)

Now these are the things which we are already familiar with in this module and we have

seen that delta t delta omega are related. This is called time bandwidth product will come

back to this time bandwidth product one more time to understand more details of it.



(Refer Slide Time: 10:24)

In the previous slide; I have shown that,  the spectrum was represented in the omega

domain which is centered at omega naught. But often when we talk about spectrum, we

represent spectrum in the lambda domain which is the wavelength domain. And it  is

instructive  to understand how to convert  this  omega domain spectrum to the lambda

domain spectrum and that can be done very easily omega which is angular frequency

which can be represented by 2pi mu is optical frequency which is nothing, but 2 pi c by

lambda. (Please look at the slides for mathematical expression)

Now if take the derivative d omega then we get minus 2 pi c by lambda square d lambda

and this is an important realization whenever we are converting frequency domain to the

lambda domain, we have to think about along this line only. Now you know that area

under the curve would be the same area under the curve representing the probability

representing how many such system are contributing so, that will be constant always area

under the curve does not matter which domain represent that should be the same. (Please

look at the slides for mathematical expression)

So,  with this  idea,  we can  make this  area  under  the  curve to  be the same which is

integrated area under the curve for both domains. And once we represent it, then we get

S lambda which is  spectrum represented  in  lambda domain  can  be converted  to  the

spectrum represented in the omega domain or vice versa; both can be converted with the



help of this equation. So, this is a simple mathematical trick we need to employed to

convert the omega domain spectrum to the very frequently use lambda domain spectrum.

(Refer Slide Time: 12:26)

While dealing with pulse intensity profile and the spectrum, we have shown that the

intensity profile; this is delta t full width half max that is called pulse duration. And in

the omega domain, this is omega naught corresponds to t equal 0 and delta t corresponds

to delta omega and this delta omega is related to the bandwidth and delta t is related to

the pulse duration which is intensity full width half max or the temporal duration of the

pulse.

So, this is pulse duration and this product has a particular meaning for a particular pulse

delta t delta nu instead of omega we can write down delta n u; we can convert omega to

delta nu very easily by 2 pi mu[μ]. So, delta omega is going to be always 2 pi mu that is

all we can convert that very easily. So, this 2 delta t pulse duration and delta nu band

width are related by time bandwidth product. (Please look at the slides for mathematical

expression)

This concept is very important concept for the ultrafast  optics and spectroscopy. The

product of the temporal and the spectral width is called time bandwidth product we have

seen that for a transform limited Gaussian pulse the time bandwidth product is going to

be 0.441, this is the time bandwidth product for a Gaussian pulse.



This  relationship  which  is  similar  to  time  energy  uncertainty  principle  in  quantum

mechanics; time energy uncertainty principle in quantum mechanics looks like delta E

delta t is going to be h cut by 2. So, it is quite similar to this uncertainty principle, which

suggest that the shorter pulse requires a broader spectrum. Time bandwidth product is

minimum for  a  transform limited  pulse. (Please  look  at  the  slides  for  mathematical

expression) 

What does it mean to have a transform limited pulse? That for a given spectrum this is

the shortest duration pulse. I have often seen student will confuse in this time bandwidth

product  concept  when  they  are  thinking  about  time  bandwidth  product;  we  have  to

remember that delta nu is the cause, I need the bandwidth to produce a pulse and this is

called effect. So, the right terminology is always to say that in order to get a short pulse I

need large bandwidth sometimes by mistake we say that.

If  I  can  reduce  the  pulse  duration  the  bandwidth  will  change;  I  cannot  change  the

bandwidth. Bandwidth is something which is a characteristic of the source. So, for a

particular source if I have a source for a particular source delta nu is constant with this

delta nu I can have infinite possibilities infinite possibilities of pulses I can have a pulse

like this, I can have a pulse like this, I can have pulse like this many other possibilities,

but I will have one possibility one pulse having the shortest duration.

And in that case only delta t delta nu is going to be 0.441 otherwise delta t delta nu is

going to be greater than 0.441. So, for a given source for a given bandwidth when I have

this delta t delta nu equals 0.441 it means that I have been able to obtain one shortest

pulse for a given source. If I do not get the shortest pulse, then the pulse duration always

be longer and that is the consequence of this time bandwidth product.

But question is this derivation we have seen in this module already and the question may

come whether we always need to use a Gaussian pulse to represent the intensity profile

because this equation is valid only for Gaussian pulse, this equation is not valid for any

other pulse. And one more point I would like to make here is that all though this equation

is similar to the Heisenberg time energy uncertainty principle in quantum mechanics, but

we cannot get this number from this equation. We have to use the derivation which we

have shown in this module for the Gaussian pulse.



(Refer Slide Time: 18:39)

And question is it always necessary to use a Gaussian pulse to represent the experimental

ultrafast  pulse.  So,  far  we have  seen the Gaussian  pulse envelop is  called  when we

consider Gaussian pulse envelop the time bandwidth product becomes delta nu delta t

equals greater than equals 0.441 condition obtained for the shortest duration pulse for a

given spectrum.

Now, Gaussian envelops are most commonly used in ultrafast optics because subsequent

analytical  math  becomes  very  simple  and closely  represent  an  experimental  ultrafast

pulse; however, it is not necessary that we have to consider a Gaussian field envelop.

One can assume many other pulse envelop which may closely represent an experimental

pulse.  Selection  of  the  appropriate  field  envelop  depends  on  the  experimental

observation. For example one can say that a rectangular pulse can also be another way to

represent ultrafast pulse.

I have nothing 0 then suddenly I have this V naught value then again coming down 0. So,

this  is  your  0  and this  is  your  V naught.  A rectangular  pulse  is  commonly  used  in

electronics and in signal transmission lines. We can also consider this kind of rectangular

pulse  to  represent  an  ultrafast  pulse  theoretically;  we  can  take  a  look  at  the  time

bandwidth product for this rectangular pulse. Procedure is known to us now a rectangular

pulse is depicted here and V(t) is represented as the temporal profile of the pulse. It is



centered at t equals 0 and this pulse can be represented by this two equations.  (Please

look at the slides for mathematical expression)

From theory of interference of plane waves it is already known that a pulse is originated

due to superposition of many pure waves frequency components. So, that is true for even

rectangular pulse which is shown here.

So, in order to produce this kind of rectangular pulse in femtosecond domain let us say, it

is an hypothetical idea we are discussing here. We are producing this kind of rectangular

pulse in femtosecond domain then we have to consider where this pulse was produced

with the help of many frequency components because only optical way one can produce

pulse is the interference. And we can immediately convert this time domain pulse to the

frequency domain by Fourier transform which would look like minus infinity to plus

infinity, time domain representation multiplied by e to the power minus I omega t dt. So,

I  can  get  this  frequency  domain  representation. (Please  look  at  the  slides  for

mathematical expression)

(Refer Slide Time: 22:45)

As a representative example, we have considered here an ideal rectangular pulse which is

centered at t equals 0. So, Fourier transform of this function will get V(ω) as shown in

slide. (Please look at the slides for mathematical expressions)



(Refer Slide Time: 24:45)

And further we can write down this integration we can simplify this. So, V(ω) can be

solved step by step as shown in the slides.  (Please look at the slides for mathematical

expressions)

(Refer Slide Time: 26:34)

And if you look at the cardinal sin function the power spectrum is going to be the power

spectrum can be represented by this P(ω) which is nothing, but V(ω) square modulus and

of V(ω) which is nothing, but V naught T whole square cardinal sin function square

omega T by 2. (Please look at the slides for mathematical expressions)



The power spectrum plotted here and this is the plot we have and it is evident that V(t) is

the  rectangular  pulse  contains  many  frequency  components  all  these  frequency

components extended up to plus infinity. So, theoretical from 0 to plus infinity all this

frequency components we have, the amplitude of a cardinal sin square function decreases

by a factor of half  when this omega T by 2 becomes 1.39. This is very well known

number we will use this number in non-linear optics as well any cardinal sin function

when you write down this sin x by x which is nothing, but cardinal sin function. (Please

look at the slides for mathematical expressions)

This cardinal sin function will drop to its maximum intensity when x is 1.39. So, we can

use this only positive component of the frequency see negative frequency is nothing, but

mathematical  artifact  is  just  as  given  to  me  because  we  have  taken  both  complex

conjugate  and the  complex  number.  So,  we have  to  avoid  considering  this  negative

frequency component which does not mean anything. We have to consider only positive

frequency component and we would like to find out what is the full width of max for this

and for that we are saying that it is delta omega T by 2. 

That is nothing, but 1.39 coming from this characteristic of cardinal sin function and

from that we get the time bandwidth product of an rectangular pulse which is nothing,

but 0.443 which is which is quite similar to the ultrafast pulse for a Gaussian pulse. We

will stop here and we will continue this module in our next lecture.


