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Now, we will define instantaneous frequency of a pulse. This is an important concept. In

instantaneous frequency of a pulse is defined by the time derivative of the total temporal

phase which is nothing, but this one phi t, this phi total is a total temporal phase of the

pulse. If instantaneous frequency does not change over the time, then the pulse is called

transform limited pulse and if instantaneous frequency changes over the time then the

pulse is called chirped pulse.

So, we have given two different definitions of pulses one of them is transform limited

pulse and other one is chirped pulse. For an ultrafast pulse with phi t equals 0; if phi t is 0

that is the complex temporal phase is 0, then omega instantaneous is always going to be

omega  naught  that  is  omega  instantaneous  is  always  constant  and  that  happens  for

transform  limited  pulse.  Otherwise  the  frequency  will  change  and  if  frequency  is

changing in a pulse for the duration of the pulse it is called chirped pulse.
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What does it mean? To understand the meaning, we will take a look at a pulse with

quadratic temporal phase. We said that phi t can be a function of time. Here we are

taking an example of bt square, that is also a function of time; a quadratic function bt

square, b is constant. If somehow we introduce this kind of temporal phase in a pulse

then instantaneous  frequency is  represented  by omega naught  plus  2 bt;  that  means,

instantaneous frequency will change as a function of time here it is linearly changing.

( Please look at the slides for mathematical expressions)

So,  I  have  shown instantaneous  frequency plot  as  a  function of  time,  it  is  changing

linearly here and because it is changing linearly what we expect a pulse having different

frequency at different time. In this regime I have lower frequency and in this regime I

have higher frequency. So, this figure depicts a pulse with quadratic temporal phase. The

variation of phi t[φ(t)] and omega instantaneous with respect to time in the pulse is also

shown here. A pulse with quadratic temporal phase is call to be linear chirp.

Instantaneous frequency sweeps of frequency changes because instantaneous frequency

over the pulse varies linearly with respect to time. For a given spectrum the temporal

behavior of a pulse may change depending on the chirp it contents. Presence of chirp will

always  stretch  a  pulse  in  time.  So,  for  a  given  spectrum;  that  means,  number  of

frequency components if fixed number of frequency components is fixed. If I have the

same number of frequency components or colour components which are interfering and



then giving me a pulse, then a transform limited pulse a pulse without chirp will not see

any change in frequency with respect to time. That is why instantaneous frequency is

always constant which nothing, but carrier frequency is.

But, for the same number of frequency components if I have somehow introduced this

kind of temporal phase complex temporal phase in the pulse that can be introduced with

the help of dispersion effect in the pulse, then what we will see? We will see a chirped

pulse  and  we  can  remember  this  one  that  a  chirped  pulse  for  a  given  frequency

components a chirped pulse will always be longer than a transform limited pulse.
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So, that is all about time domain description of a pulse. Now, we look at the frequency

domain representation of a pulse. The time domain representation of a pulse can easily

be converted to frequency domain using Fourier transform E omega equals this integral.

Here E t is the field in time domain and E omega is again the field in frequency domain.

If a Gaussian envelop is assumed for the time domain field that is this one, then by doing

this Fourier transform we get another Gaussian function in the frequency domain which

is represented by e to the power minus a omega minus omega naught  square whole

square. But,  what is the difference between this Gaussian,  the Gaussian in frequency

domain  and the  Gaussian  in  time domain?  In the time domain  the  field  envelope  is

centered at t equals 0 always and that is why it is represented by e to the power minus at

square. ( Please look at the slides for mathematical expressions)



But, in frequency domain when we do the Fourier transform we get another Gaussian

that is the field envelope in frequency domain, but this field envelope is not centered at

omega equals 0, it is centered at omega naught that is the center frequency of the pulse.

So, this is the two differences we notice when we convert time domain representation to

the frequency domain representation.
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So, in brief whatever we have gone over a pulse has representations in two different

domains; one is time domain and other one is frequency domain. In time domain it is

expressed with the help of a field envelope function a t and its temporal phase; temporal

phase is associated with the carrier wave. And in frequency domain again it has a field

envelope and the phase which is related to the spectral phase. We have to remember that

this phase is coming in time domain, that is why this temporal phase and this phase is

coming in the frequency domain, that is why it is called the spectral phase.

After understanding these mathematical representations of an ultrafast pulse it is quite

instructive  now to ask how do we connect  these mathematical  representations  to lab

based measurements? Can we measure a t because in order to represent my pulse I need

to know either a t, I mean a t and temporal phase or I need to know field envelope and

spectral phase? Can you measure them?
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A  pulse  with  the  center  wavelength  800  nanometer  now  center  wavelength  is  800

nanometer which means it is associated with omega naught which is nothing, but omega

average which means all different frequencies are interfering, after the interference we

get the resultant frequency of the total field and that resultant frequency is omega naught

and we have assume that it is transform limited pulse. If it is not a transform limited

pulse, then this omega naught would be changing or instantaneous omega will change

over the time over the over the pulse.

So, here we have assume that it is a transform limited pulse and the center wavelength is

800 nanometer.  Often we call  800 nanometer pulse it means that a pulse with center

wavelength 800 nanometer. Now, if you consider the center wave length 800 nanometer

then the optical period of this pulse which means the time to take from here to here is

going to be 2.7 femtosecond;  a simple calculations one can do that very quickly 2.7

femtosecond. On the other hand, the response time of all time sensitive detectors such as

photodiode, photomultiplier tube, CCD camera etcetera is mostly nanoseconds.

And, this is why time sensitive detectors are way too slow to measure optical cycles of a

pulse. We cannot measure this kind of oscillation, we cannot view this kind of oscillation

with the help of time sensitive detector available time sensitive detectors.
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However, we must know that the time sensitive detectors can measure intensity  of a

pulse  this  is  something  which  is  measurable  quantity.  And,  also  grating  based

spectrometer  grating  based  spectrometer  can  measure  the  spectrum.  So,  these  are

spectrum and intensity.  Spectrum and intensity these are measurable quantity and we

have to connect them to a t or A omega[ω] or phi t[φ(t)] and phi omega; spectral phase

temporal phase or dose envelope functions. So, that is our next task.

(Refer Slide Time: 12:41)



The intensity of electromagnetic radiation is defined as the time average magnitude of

Poynting vector. This comes directly from Poynting theorem. From Poynting theorem we

find that intensity of a pulse is nothing, but the square modulus of the field. So, what we

can measure with time sensitive detector is not the field directly, but the square modulus

of the field which is nothing, but E t multiplied by its complex conjugate.

For  most  of  the  theoretical  calculations  and  experimental  measurements  related  to

ultrafast  optics and spectroscopy are good approximation for an ultrafast  pulse is the

Gaussian pulse which we have shown here. The function is centered at t equals 0 always

in time domain. Furthermore, the temporal duration this delta t of an ultrafast pulse is

defined in terms of full with at half maximum of its intensity profile.

I repeat this one, one more time. A pulse looks like this and oscillation of an electric

field,  but  this  oscillation  is  modulated  by a  this  is  the electric  field  oscillation.  This

oscillation is called carrier wave. This oscillation is modulated by a field envelope. This

is your field envelope which is represented by a t, but intensity which is represented by

the square modulus of the field is here. We get only an envelope function which is also

represented here an envelope function representing the intensity.

So,  in  the  representation  of  the  intensity  of  a  pulse  we do not  have  any oscillation

because e to the power i omega naught t plus phi t multiplied by e to the power minus i

omega naught t plus phi t, they cancels out. And, pulse duration is always defined with

respect to full width half max of the intensity profile not the field envelope. So, this is the

intensity profile and this one is the field envelope.
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Because the intensity of a pulse is nothing, but the square modulus of the field, only time

domain representation of the pulse cannot distinguish pulses with and without chirp. Let

us draw this one. I have a pulse. This is without chirp. For the same spectrum I may have

a I have a chirp pulse which looks like this. In this regime we have lower frequency in

this regime we have higher frequency. 

Chirp can be introduced with quadratic temporal phase which we have already seen. So,

we  are  taking  an  example  of  quadratic  temporal  phase  and  we are  representing  the

electric  field  and  this  is  chirped  pulse  representation  of  a  chirped  pulse  and  this  is

transform limited pulse which does not have any complex phase here, no complex phase

here.

But, if we take the intensity for each one which is given by the square modulus of the

respective electric field we see that the intensity are the same. This means that the time

domain  representation  of  the  pulse  cannot  be  distinguished.  The  time  domain

representation cannot distinguish a chirped pulse and the transform limited pulse. The

quadratic temporal phase has dramatic effect on the pulse, but this dramatic effect cannot

be  judged  or  felt  if  we  view  the  pulse  in  only  time  domain,  frequency  domain

representation is necessary.



(Refer Slide Time: 18:23)

So, in frequency domain we have field envelope in frequency domain and spectral phase.

And,  again  the  spectrum  which  you  measure,  it  is  measured  by  grating  based

spectrometer that is nothing, but again square modulus of this frequency domain field.
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So, thus far we have discussed two different domain representation of pulses, but we

should not think here that they are two isolated domains. In fact, they are interconnected.

A simple interconnection can be realized through this time bandwidth product, delta t

delta nu. Here we have to remember that delta t is representing the intensity full width



half max, this is I t not E t and delta nu is representing the spectrum that is S omega not

E omega. It is represented by this and this omega is converted to nu by this equation

omega equals 2 pi nu.

So, when we talk about time bandwidth product we are looking at the time duration of

the pulse and the band width of the pulse. Time duration of the pulse is defined with

respect to full width half max of the intensity profile and the bandwidth is represented

with respect to full width of max of the spectrum.

(Refer Slide Time: 20:31)

To understand time bandwidth product we will take an example of a Gaussian pulse with

and without chirp. First we will closely look at transform limited Gaussian pulse. This

means that this is a pulse without chirp. This is given by this equation. Here we remind

ourselves that a phi t that was complex temporal phase is 0 and that is why it is transform

limited pulse which looks like this. Electric field of a transformative Gaussian pulse in

time domain is written here where a is expressed as 2 ln 2 by delta t square; delta t is the

full width half max of intensity profile.

So, this time domain representation can be converted to frequency domain with the help

of Fourier transform and with the help of this standard Gaussian integral we get the field

in frequency domain. And, once we get the field in frequency domain we know that we

can get the spectrum by taking square modulus of the frequency domain electric field

and we get this simple equation.
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Now, taking the definition of full width half max of the spectrum what does it mean? It

means that this is the spectrum which is represented by S omega which is centered at

omega naught and if this is delta omega, then this point will be represented as omega

naught plus delta omega by 2. At this point intensity would be half of the maximum

intensity S naught; S naught is the maximum intensity.

So, S omega naught plus delta omega by 2 is going to be S naught by 2 and if we plug

that  in  we get  this  equation.  Simplify this  equation we get  this  and then again delta

omega equals nothing, but 2 pi delta nu because omega equals 2 pi nu and we get this

equation  and finally,  we get  delta  nu delta  t,  that  is  the  time bandwidth  product  of

transform limited Gaussian pulse as 0.441. ( Please look at the slides for mathematical

expressions)

The product of temporal and the spectral width is called the time bandwidth product for a

Gaussian pulse TBP which is 0.441, this relationship which is similar to time energy

uncertainty principle in quantum mechanics states that shorter pulse requires a broader

spectrum. TBP is minimum for a transform limited pulse that is for a pulse width the

shortest possible temporal distribution for a given spectrum.
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Let us now consider a pulse width quadratic temporal phase. Note that here we have

introduced a complex phase phi t is now b t square I have included and in this case pulse

would look like this. It should start with this and slowly it will move to higher frequency.

So,  if  we have a  pulse,  a  Gaussian pulse with linear  chirp we can express the  time

domain feel to be like this and we can convert into frequency domain with the help of

Fourier transform again.

And, what we get here the c c represents complex conjugate because we are taking the

real field. So, the real field is always represented by half of e to the power i theta plus e

to the power minus i theta, this part is represented as complex conjugate. So, we plug

that in and finally, again using the standard Gaussian integral, we get these equations and

this is a complex number. We do not need to know what is a mean by a and b.
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We can represent it with the different complex number A plus i B capital A plus i capital

I B and then we can separate real part and the imaginary part. This is purely real part and

rest of them is imaginary part and this is the spectrum. So, this is the electric field we get

and from this electric field in frequency domain we get spectrum S omega as square

modulus of the electric field in frequency domain and we get finally, the expression for

spectrum. ( Please look at the slides for mathematical expressions)

And, again taking the definition of full width half max which means I have a spectrum S

omega which is centered at omega naught and full width half max is delta omega. So, S

naught by 2 I get half of the maximum intensity I get when I have omega naught plus

delta omega by 2 and that is exactly what we have used.
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And finally, after doing little bit of math which can be followed very easily we get this

expression and we can insert  a;  a  is  nothing, but  previously we have already shown

expression we had for a we get delta omega delta t. Delta omega delta t equals this. So,

the product looks like this. Now, we do not need to know what is it what is the mean by

b and a, but we can always say that because this is a square term is always greater than 0,

and because it is greater than 0 delta omega delta t product is always going to be greater

than 4 ln 2. ( Please look at the slides for mathematical expressions)

And, if it is greater than 4 ln 2, then we will be able to find out the product of delta nu

delta t which is greater than always 4 ln 2 by 2 pi. Which gives us that delta nu delta t

time bandwidth product of a linearly chirped a Gaussian pulse linearly chirped Gaussian

pulse  is  always  going  to  be  greater  than  0.441. (  Please  look  at  the  slides  for

mathematical expressions)
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So, what is the meaning of this equation? Finally, we are getting a general expression for

the time bandwidth product of a Gaussian pulse as delta nu multiplied by delta t greater

than equals 0.441. This means that for a given source when I have a source is fixed; that

means,  number  of  frequency  component  is  fixed,  spectrum  is  constant.  How  many

frequency  components  we have  is  constant.  For  that  given  source  or  for  that  given

bandwidth delta nu is fixed.

For a given bandwidth transform limited pulse represents the shortest duration pulse; for

the same given band width chirp will always broaden the pulse in the time domain. So,

this  is  a  two  consequences  we  find  from  time  bandwidth  product  and  this  idea  is

comparable to the quantum mechanical uncertainty principle.
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With  this  we come to  the end of  this  module.  In  this  module  we have learnt  many

requirements  for  the  synthesis  of  ultrafast  pulses  and  some of  the  characteristics  of

ultrafast pulses and they are revealed by mathematics. We will meet again for the next

module.

Thank you.


