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Welcome back to the module 14. We are discussing Maxwell’s Equation in the medium.

What we have assumed here the medium should not have any free charge in the medium

and as why rho which is volume charge density becomes 0. If it is 0 in the medium then I

can write down this expression this is nothing, but expression for D that is the relative

flux  density  which  includes  the  vacuum contribution  and the  non-linear  polarization

contribution. This is simplified to this equation and finally, I can write this equation. 

Now question is in the equation which we have already got this is the equation we have

got after getting triple product, we remind our self that this is the equation we have got

minus E equals mu naught D d t ok. Now in order to in the in vacuum we have seen that

we have made it 0 questions is in the medium can I do that. In the medium it is not

necessary that divergence of electric field would be 0 it is not always necessary, but if we

consider very weak non-linear polarization this is the perturbative limit.

We are considering that I have a medium input beam is propagating through the medium

that is creating this non-linear polarization. This non-linear polarization is very weak and
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however,  this  weak  non-linear  polarization  can  create  another  field  which  is  called

emitted field.  So,  if  we consider  that very weak non-linear  polarization then we can

assume that this P NL is very small and if it is very small then we can consider to be

negligible or 0. 

So, under this weak field approximation weak non-linear polarization approximation I

can make this field to a divergence of the field to be 0 in that case this become 0. So, this

component become 0 and I get this expression. This expression can be written as this.

This is  called perturbative limit  perturbative limit  of non-linear  effect and under this

perturbativelimit we get the expression which we have use previously as fundamental

equation of non-linear optics.

(Refer Slide Time: 03:27)

We can reduce it to 1 dimension I will get this expression. This expression was used we

remind this expression here e is not emitted E is not input beam E representing emitted

beam.  There  are  three  step  model  input  beam field  is  expressed  by E  input  due  to

preparation of the fundamental beam through the medium I am creating this non-linear

polarization.

How they are related? They are related by this Taylor series expansion, then this non-

linear polarization is nothing, but oscillatory dipole any oscillatory dipole would be a

source of electromagnetic radiation. So, I am creating this new field and how this new



field and polarization are related? This is the expression which relates this non-linear

polarization and the new field. 

To obtain a simplified picture we have considered this propagation along the z direction

that is why this z dependent and E z t represents emitted field, this E z t is the emitted

field  or  fundamental  beam.  P  NL[PNL]  features  a  non-linear  contribution  to  the

polarization suggesting that non-linear polarization acts  as a source for emitted field.

(Please look at the slides for mathematical expressions)

This equation enables us to calculate non-linear effects the second and the third order

due to propagation of ultrafast pulse in dielectric medium, non magnetic medium source

free medium. So, this equation is valid for dielectric medium, non magnetic medium, a

source free medium and we have also assumed that we have weak non-linear effect. That

is under the perturbative limit. 

(Refer Slide Time: 06:03)

We have seen this equation previously, but we have not done the derivation before. Now

to obtain the solution we used slowly varying envelope approximation, we have seen this

approximation before and we assumed the form of emitted  field as a pulse with the

center frequency omega naught and a vector k naught. And non-linear polarization also

having  an  envelope  function  similar  to  pulse  and  its  frequency  components  omega

naught. 



So, what is the idea? Idea is that oscillatory dipole is nothing, but representing this non-

linear polarization and the frequency of this dipoles would be equivalent to the or the

same as the frequency of the emitted field. That is why frequencies are the same for

polarization and emitted beam.

But it may so, happened that their phase that is k naught and k p they can be different

and this is very common if we have k naught equals k p, then we will call it the process

is phase matched and if they are not equal, we will call it process is not phase matched.

So, here in this to obtain the solution, in the trial solution we have considered the same

centre frequency, but different wave vectors k naught and k p for the emitted beam and

the non-linear polarization. (Please look at the slides for mathematical expressions)

In addition here we have considered complex notation of the electric field and the non-

linear polarization. As the complex notation mixed the mathematic simple; however, we

shall remember that in the end of the calculation we need to take the real part E z. So,

now, position is how they are related this is something which we need to find out. 

In the end I need a solution for E, because electric field if I know emitted electric field,

then I know emitted field intensity and I want to find out what are the factors which can

control the field intensity of the emitted beam that is exactly what you want to know

because this field intensity of the emitted beam is nothing, but the conversion efficiency

conversion of 800 nanometer frequency component. So, if I want to find out what is the

efficiency of the conversion frequency conversion that will depend on this intensity. So, I

need to know this field strength from this equation.
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Furthermore here we have considered that due to propagation of input fundamental beam

with omega 1 frequency. So, omega 1[ω1] frequency is the fundamental frequency and

polarization is induced in the dielectric nonmagnetic source free medium, the frequency

of the induced polarization is omega naught. So, here this is emitted beam and if I need

to write down input beam z t, then I have to write down the same.

Another field that is e field let say that is E naught field and then e to the power i omega

1 t minus k 1 z this is your input beam. So, there are three steps input beam is creating

non-linear polarization, non-linear polarization is creating the input beam emitted beam.

If the second harmonic generation is considered then we can write down omega naught

equals 2 omega 1 which means oscillating dipole is a source of electromagnetic radiation

and  that  is  why  the  new  light  is  created  at  the  same  frequency  of  the  induced

polarization. (Please look at the slides for mathematical expressions) 

However, the phase of the induced polarization and the emitted field may be different

that is why it  is shown here. This fundamental frequency omega 1. This omega 1 is

propagating through the medium this beam is propagating through the medium taking an

example  of  plane  wave  at  each  point  of  the  medium,  we  are  creating  non-linear

popularization which is oscillatory dipole and each dipole will produce some field that is

the emitted field and a omega naught frequency which is nothing, but 2 into omega 1, if I

considers second harmonic generation this fields are in phase. 



So, if we can create all this fields in phase then we call it phase is matched and we get

maximum intensity from SHG process. But if the fields are not matched if the if the

fields are destroying each other due to destructive interference then in the end we will

not get any conversion for SHG. That is why it is very important to understand how the k

naught and k p they are related because these 2 quantities are going to contribute them

conversion efficiency. 

(Refer Slide Time: 12:23)

When an ultrafast  pulse propagates  in  a dielectric  medium,  in  addition to  non-linear

effects the pulse experience is dispersion as ultrafast pulse has broadband with different

colour  of  frequency  components  experience  different  refractive  indexes  while

propagating,  resulting  in  dispersion effects  which  cannot  be realized  within the  time

domain representation of the pulse. For that we need to represent the pulse in frequency

domain.

In order to incorporate dispersion effect as well, we shall represent a z t in terms of its

Fourier transform. So, the basic idea is that, I cannot use when a pulse is propagating

through the medium I cannot use its time domain representation, I have to use frequency

domain  representation.  Because  frequency domain  representation  can  incorporate  the

dispersion effect and the pulse will experience dispersion effect now this pulse is the

emitted beam that is why A t a z t is expressed in terms of frequency and this is nothing,

but the Fourier transform in with Fourier transform and if we express this.



In  the  field  then  I  can  write  the  field  as  inverse  Fourier  transform of  the  envelope

multiplied by carrier wave in the time domain. So, this part in the frequency domain and

this  omega z  omega  bar  is  nothing,  but  a  conversion  of  the  variable  E omega it  is

centered at. So, this is a omega this a omega is centered at omega naught that we know.

So, if we make it centered at omega 0, then I can define this omega bar a new variable

which is nothing, but omega minus omega naught this is the new variable. So, this field

now I have expressed this field as it depends on z it depends on t and its depends on

omega bar as well.

Now, I have incorporated time frequency dual domain expression. This is a dual domain

expression I  need this  dual  domain expression because dispersion effect  can only be

realized in the frequency domain, I should have this frequency domain expression. So,

what I get? In the end which can simplify this expression we can multiply this e to the

power  i  omega naught  t  and e  to  the  power  i  omega  bar  t  and finally,  we get  this

expression where polarization expression is familiar  to us this is the trial solution we

have taken already. 

But emitted field is expressed in terms of z t and also omega and we will consider that

this field is propagating through the medium. So, all we need to do is that we have to

plug that in, in this expression finally and we have to get this second derivative with

respect to z, second derivative with respect to t and secondary derivative with respect to t

of the polarization.
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So,  this  is  the terms we need to  calculate  to plug that  in.  So,  we will  take the first

derivative of the electric field if we take the first derivative of electric field with respect

to z, z dependent term is a is z dependent and also this is z dependent. So, I get these

expression the simple derivative second derivative I take and I get this expression.

Now, we will employ slowly varying envelope approximation. Slowly varying envelope

approximation is suggest that the envelope function varying slowly in time and varying

slowly it means that, I can consider the second derivative to be 0. It is varying so, slowly

that the variation the gradient of the gradient of the gradient is 0 or approximately can be

considered into be 0. So, this slow variation leads us to a reduced expression for this

equation where second derivative is taken to be 0.
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Now, we will take the time derivative. We will consider time derivative and remember A

z omega is not time dependent time dependent is part is that. Just this carrier wave that is

why this part can be very easily rewritten like this way and another time derivative we

have to take polarization expression we will get this finally, polarization expression can

be written like this way second derivative and here we have to consider one thing we will

consider that under SVEA second derivative of this term is zero.  (Please look at the

slides for mathematical expressions)

This  is  SVEA  approximation  second  derivative  is  zero.  In  addition  to  the  second

derivative I will consider the first derivative to be also zero because we considered weak

non-linear polarization. So, polarization nonlinear polarization is so, weak that is first

derivative is almost zero. So, approximately I can write down the non-linear polarization

expression as like this. 
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Thus one can insert all the expressions in to the 1dimensional equation of non-linear

optics and we get this expression. We can rewrite this expression as this and again we

can re write this expression like this steps can be easily obtained. Now at this point we

will insert the dispersion relationship. This kind of dispersion relationship we have seen

in dispersion effects of non-linear pulse propagation. So, this mu naught epsilon omega

naught  mu naught  epsilon  omega  square  this  part  can  be  written  as  k square  and k

depends on omega.

(Refer Slide Time: 20:33)



If  we  write  a  general  expression  for  k  then  we  get  this  k  omega  this  is  a  general

expression for k, this is k square remain k square. So, I can write down this k square to

be like this because k omega plus k naught this is approximated as 2 k naught. That is

why you can write down approximately like this. So, I get this express and rewriting this

expression one more time here and we get this expression like this. 

(Refer Slide Time: 21:30)

Now, this k omega we do not know the general form, that is why we will be able to

express it in terms of Taylor series expansion all we know that the k at omega naught

value I know the value of k that is k naught and I know that; I know that derivatives

exist. So, that is why we can use the Taylor series expansion to express k and different

parts  of  this  expression  representing  different  kind  of  dispersion  that  we  have  seen

already in the dispersion effect in non-linear pulse propagation. 

For an example, the second term this term is the vacuum term if we do not have any

other term if we have this term then this is a vacuum term no dispersion effect. Then the

first order term I can introduce first order term representing the group velocity. So, the

effect of group velocity can be judged only if we include this first order term. 

Then there is a group velocity dispersion term GVD which can be realized with the help

of second order term, second order dispersion term. So, what we will do here? We will

consider this problem for the first order up to the first order we will neglect every order

terms then we can write down that approximately this k omega can be written as like



this. We know that omega bar is nothing, but omega minus omega naught that is written

here and v g group velocity we have seen previously it is d omega d k at omega naught.

So, this is 1 by v g. 

(Refer Slide Time: 23:45)

If we insert that then I get this expression rewriting this expression little bit here and

finally,  we after rewriting this expressions we get this and we have again change the

variable  because remember d omega; we have expressed omega equals omega minus

omega naught. So, d omega sorry omega bar equals omega minus omega naught. So, d

omega bar is nothing, but d omega and that is exactly what we have written here. 

So, the derivative we have changed with respect to d omega bar, here also d omega bar

and this was the definition of a z t we have seen in terms of frequency, this is also

frequency  dependent  and if  we take  the  first  derivative  with  respect  to  z,  I  get  this

expression and with respect to t I get this expression. So, what does it mean? It means

that this first term is nothing, but the derivative of a is the field envelope of the emitted

beam with respect to z and the second term is representing the derivative of the field

envelope  of  the  emitted  beam  with  respect  to  t.  (Please  look  at  the  slides  for

mathematical expressions)
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Finally, we can write down this expression. Here what we have done is that, this was the

expression we have got from Maxwell’s equations and using this trial solutions, we have

found a solution was like this plus 1 by v g d t equals minus i omega naught, omega

naught square mu naught squared divided by 2 k naught b z t, e to the power i, k naught

minus k p z. (Please look at the slides for mathematical expressions)

So, this was the expression we have got finally. Then what we will do is that, we will

turn off this time dependent part and we will just look at the space dependent component.

This simplification or transformation is like turning of the time dependence to monitor

space dependent effects only and this can be practically realized if we transform the time

coordinate to be centered on the pulse.

If we do that transformation, then we can turn off this time dependent component and we

have the phase dependent component only. This simplification will ultimately lead us to

the understanding of an important concept which is called phase matching in non-linear

medium.
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When a non-linear process holds that is k naught equals k p then I have this expression

delta k is nothing, but k naught minus k p and this delta k if it is 0 then the process is

called phase match. So, if I have k naught minus k p, k naught equals k p, then delta k

becomes 0 and we call it a phase matched. (Please look at the slides for mathematical

expressions) 

But if we do not have phase matching condition fulfilled, then we have to integrate this

expression to get the intensity final intensity because we are interested in final intensity

how much intensity I can get? We see that the final intensity depends on L square that is

the medium length definitely if we use thicker length, if we use thicker crystal we will

get higher yield, but we also have to remember that it depends on this also which having

L contribution this is call cardinal sine function.
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So, it depends on the behavior of a cardinal sine function, I have an input beam now I

have emitted beam due to non-linear polarization.  Now this emitted beam intensity I

depends on this cardinal sine function. If it is phase matched then always the intensity

will grow, but if it is not phase matched then intensity will dropdown very quickly as a

function of the length. If we increase the length it will dropdown immediately, we have

seen all these behavior in module 3 already. 
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So, to achieve phase matching for high harmonic generation, it is necessary to find out

non-linear medium for which refractive indexes at omega 1 and 2 omega 1 are the same.

Unfortunately  the  index  of  refraction  varies  with  frequency  of  radiation,  this  is  a

phenomenon  called  dispersion  effect  therefore,  phase  matching  condition  cannot  be

fulfilled in any medium the solution is to use birefringent crystal. 

This  is  also  we  have  seen  before  in  the  birefringent  crystal  we  have  ordinary  and

extraordinary beams and one beam polarization can be in phase with the emitted beam

by the other field and that is the basic idea how we get we achieve phase matching in

birefringent crystal. In birefringent crystal when like propagates it is decompose in to 2

beams with mutually orthogonal polarizations, this beams are called ordinary beam and

extraordinary beam. 

Refractive indexes are different for ordinary and extraordinary beams and therefore, it is

possible to achieve phase matching for centre frequency component that is shown here

by omega 1 and 2 omega 1. This is an analysis of phase matching condition taking one

frequency  component  only.  So,  one  can  say  that  for  omega  1  this  is  omega 1,  this

refractive index can be same at omega 2 omega 1 and they can be the same. This is

possible and we can say that phase matching condition can be fulfilled.  (Please look at

the slides for mathematical expressions)

But you have to remember that even at the centre frequency component if we have phase

matching let  say this is these 2 points they are having phase matching because their

refractive indexes are the same. But if I have a with other frequency component for an

example, this frequency component. 

This frequency component having refractive index here and corresponding this is I call it

omega 2, then this is 2 omega 2 and 2 omega 2 I have refractive index different which

means that  at  the centre  frequency component  I  can have phase matching,  but other

frequency components I may not have phase matching and we have to remember that a

pulse  will  exist  only  when  all  frequency  components  should  be  present  or  many

frequency component should be present. So, what might happen in a non-linear medium?

For a particular frequency component I can achieve phase matching and that is why I can

have  emitted  beam  intensity  for  that  frequency  component  2  omega  1.  But  other

frequency  component  because  they  are  destroyed  because  phase  matching  is  not



achieved in the end, I do not have a pulse because in order to exist in order to obtain a

pulse  at  2  omega 1 frequency centre  frequency component  I  need all  the  frequency

component to be present. (Please look at the slides for mathematical expressions)

So, this is 2 omega 1 there are many other frequency components should be there here

that  is  why  phase  matching  bandwidth  is  very  important,  we  shall  for  simplicity

considered  SIG  process  here  with  an  ultrafast  pulse. (Please  look  at  the  slides  for

mathematical expressions)
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The  range  of  frequency  components  or  wavelength  components  that  achieve  phase

matching is called phase matching bandwidth. So, question is if I have this is your omega

1 input beam. This will be converted to 2 omega 1 2 omega this is omega. So, this is

nothing, but non-linear frequency conversion in frequency domain. I am creating 800

pulse from 800 pulse I am creating 400 pulse 400 nanometer pulse by in this conversion

process we have to remember that  very easily  I  can get a phase matching condition

fulfilled  for  this  frequency  component. (Please  look  at  the  slides  for  mathematical

expressions)

But it is not necessary that I will be able to achieve phase matching condition for other

frequency components as well.  And if I cannot achieve phase matching condition for

other frequency component, the pulse will break down and I will not have any pulse



anymore  at  the  higher  frequency.  So,  phase  matching  bandwidth  is  very  important

question is how many such frequencies can be phase matched?

Delta omega that is called phase matching bandwidth. So, what we are going to express

is  that,  we are interested  in delta  k.  So,  delta  k  can be expressed as  this,  this  is  an

expression  which  we have  seen  previously  this  is  nothing,  but  k  naught  and this  is

nothing, but k p. Here second harmonic generation we have considered. (Please look at

the slides for mathematical expressions)

So, k p is expressed like this way and k naught is expressed like this way in terms of

wavelength we can immediately express like this way. So, this two this does not exist

here, no they should exist here they should be there here ok. So, finally, what we see is

the delta k in terms of lambda, we can express like this way and we will assume that this

lambda 1 is nothing, but lambda naught plus delta lambda. (Please look at the slides for

mathematical expressions)

So, if we express like this way then 4 by lambda 1 is 4 pi by lambda 1 can be expressed

as this which is nothing, but this and then finally, expressed this and one can write down

this because it  is just because lambda naught is much greater than delta lambda. So,

finally,  if what we get is, an expression like this and what we are expressing here is

refractive index in terms of Taylor series expansion at centering this wavelength and this

wavelength. (Please look at the slides for mathematical expressions)
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So, we plug that in finally, we get this expression and because it is phase matched at

lambda naught, we can write down that n lambda naught equals n lambda naught by 2

this is what we can write down and that is why we can reduce this expression and finally,

we get an expression like this, where we are neglecting square terms delta lambda square

terms.  So,  this  term has  been neglected  because  we have  a  square  term.  So,  this  is

considered to be 0. (Please look at the slides for mathematical expressions)
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So, finally, what we get is this expression and further we can reduce the expression in

terms of delta lambda. What we get delta lambda equals this delta k by this and from

intensity, we know that the intensity will depend on the cardinal sine function. So, from

that  expression  we  know  that  the  function  this  kind  of  cardinal  sine  function  will

decrease to half of its maximum intensity, when I have this value delta k L by 2 equals

1.39. 

So, I will consider that the intensity will go down to 0 when I have twice this value. So,

which means I am not here at this point, I am actually here in this point. So, I can write

down this expression and finally, delta k has an relationship with the thickness. So, if we

plug that in here, we get delta lambda inversely proportional to L delta lambda inversely

proportional to L. 

What is important here to note here is that, if we have a non-linear medium and if we

have a very short pulse, short pulse will have a large delta lambda large delta lambda thin



crystal we need. So, this is suggesting that although in a medium I may achieve phase

matching for the centre frequency component,  but in order to gather other frequency

component I need to use a thin crystal. The shorter the pulse is thinner the crystal we

need. So, this is the take home message we have.
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With this we have come to the end of this module, in this module we have gone over

more details of the Maxwell’s equations its implementation in understanding plane wave

propagation in the vacuum then ultrafast pulse propagation in the medium and how we

can use Maxwell’s equations to understand different phenomena in ultrafast optics. We

will meet again for the next module.


