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Welcome  to  the  module  2  of  the  course  Ultrafast  Optics  and  Spectroscopy.  In  this

module we will go over the mathematical representation of ultrafast pulse.

(Refer Slide Time: 00:44)

We  have  already  pointed  out  in  our  last  module  that  a  very  short  flash  of  light  is

technically called an ultrafast pulse in which electromagnetic energy is localized in a

very short time. Synthesis of such light pulses requires a large number of plane waves or

color components or wavelength components. So, in this figure, if you see this figure we

have represented a number of waves with different colors – red, yellow, green, blue.

They have slightly different frequencies and they are interfering. They are interfering and

having constructive interference in this regime. This is localizing electromagnetic energy

in time.

So, the interference of different plane waves results in localization of electromagnetic

energy in time which is nothing, but a pulse. Pulse has two different components; one,

this  is  called  envelop  function  and another  one  is  carrier  wave.  The  exact  temporal

duration of a pulse depends on these frequency components that constitute the spectrum



of the pulse and the phase relationship between the frequency components. Before we

begin discussion of the synthesis, manipulation, control, measurement and application of

ultrafast pulses we must first understand some important properties of the ultrafast pulse.

(Refer Slide Time: 02:52)

As an ultrafast pulse is a sophisticated flash of light, we will start the discussion with a

short introduction to light. The true nature of light is unknown. Light is said to be dual in

nature. Certain phenomena such as interference exhibit the wave nature of the light and

in that case light has both electric and magnetic fields. The other phenomena associated

with light such as photoelectric effect, display, the particle aspect of light. Light particles

are called photons. This dual characteristic of light successfully explains all experimental

observables.

However, true nature of light is still unknown. A large portion of this course will deal

with only wave character of light and this is why we shall focus on the wave character of

light.



(Refer Slide Time: 03:56)

The wave character of light is fully described by Maxwell’s equations which are given

here.  These  equations  are  called  Maxwell’s  equations  which  are  nothing,  but  vector

differential operations on the electric and magnetic fields; this is electric field, this is

magnetic field.

(Refer Slide Time: 04:22)

In  vacuum one-dimensional  solution  to  these  equations  renders  plane  wave both  for

electric and magnetic fields. As magnetic field strength is very weak compared to the

electric field strength we will neglect  magnetic  field here,  we will  only focus on the



electric field which is shown here the complex representation of the electric field looks

like this E z, t that is one-dimensional propagating along z direction equals E naught

which is absolute magnitude of the electric field omega naught is angular frequency, and

k is the magnitude of the wave vector. Wave vector representing the propagation vector

of the wave; propagation vector of the wave is along z direction. ( Please look at the

slides for mathematical expressions)

Now, what does it mean by this electric field and the propagation vector? Let us say light

wave is propagating along this direction and if we have a free electron here then what

will happen, this electron will start vibrating along this direction which would be the

perpendicular direction perpendicular to this propagation direction, and this will vibrate

along this direction because electric field is acting along this direction; an electric field is

nothing, but the force per unit charge.

We must note here that the actual electric field is the real part of the solution and real

part of the solution is given by the cos omega naught t minus kz which is nothing, but an

amplitude modulated cosine wave. Its electric field oscillates on the plane x, z this is the

plane x and z. On this x, z plane the field is oscillating and the propagation direction is

along this z direction. ( Please look at the slides for mathematical expressions)

The term omega naught t minus kz, this term in this equation features the phase of the

plane waves which represents an angle to manifest certain linear advancement of the

propagating wave. This depicts a close relationship between rotational motion and linear

motion. When a wave propagates along z direction and advancement of the wave along

the z direction with respect to a certain frame or a point, let us say with respect to this

point wave is propagating along; wave is propagating along z direction. So, with respect

to this point the advancement can be represented by an angle in the rotating dial in their

angle in this rotating dial.

For an example, 2 pi phase in rotating frame; 2 pi phase in rotating frame is represented

by this 2 pi angle. This is 2 pi angle, represents an advancement of the way by lambda

distance in the linear frame. This is the lambda distance; phase is an important physical

quantity of a plane wave. The role of phase on the synthesis behavior of a pulse would be

more evident very soon. ( Please look at the slides for mathematical expressions)



(Refer Slide Time: 08:30)

For a constant phase front, the first derivative of the phase with respect to time becomes

0. So, if we take the first derivative with respect to t; the first derivative of this phase

with respect to t for the constant phase front it becomes 0. Here dz dt, this dz dt is called

phase velocity which is c speed of light in vacuum. Thus phase velocity of a plane wave

is defined as the velocity with which the constant phase front of a plane wave travels.

( Please look at the slides for mathematical expressions)

This equation represents a positive value. Look at this positive value here which suggests

that the direction of the velocity is along positive z direction that is why the equation

given here the complex representation of the plane wave E z, t equals E naught e to the

power to the power i omega naught t minus kz. This equation representing a plane wave

propagating  along  positive  z  direction. (  Please  look  at  the  slides  for  mathematical

expressions)



(Refer Slide Time: 09:55)

It  is  important  to  understand  the  relationship  among  c,  omega  naught  and  k  in  this

equation. c is speed of light in vacuum, omega naught is angular frequency and k is the

magnitude of the wave vector.

We  have  already  pointed  out  that  the  2  pi  phase  in  rotating  frame  represents  an

advancement  of  the  wave  by  lambda  distance  in  the  linear  frame.  This  can  be

mathematically represented by k multiplied by z plus lambda; this is the lambda phase

and advancement equal is equal to kz plus 2 pi or k equals 2 pi by lambda. ( Please look

at the slides for mathematical expressions)



(Refer Slide Time: 10:53)

On the other hand, omega naught is the angular frequency of the plane wave which is

related  to  the  optical  frequency  nu  naught.  The  constant  phase  front  of  the  wave

propagates with a velocity called phase velocity which is given by omega naught by k.

We get this phase velocity to remind you from the first derivative we take. The first

derivative of the phase and then we make it 0 which means phase velocity represents the

velocity of the constant phase front. Thus a plane wave holds all these relationships. It is

a good idea to remember them. So, this is all about the plane wave.

(Refer Slide Time: 11:55)



Question is, how do we realize a pulse from the concept of plane wave? The idea of

pulse comes from the theory of optical interference or plane waves. Here we have shown

two interfering waves with slightly different frequencies. The resultant field represents

the pulse. So, the blue and red waves we have represented to show the slightly different

frequencies or wave length for the interfering waves and when they interfere in time

there are regions where these two waves would be in phase. So, these are the regions

where they are in phase and there are regions where they are out of phase.

When two waves are interfering in phase they are called constructive interference and

when they are in they are out of phase that is called destructive interference due to this in

constructive  and  destructive  interferences  we  get  the  localization  of  electromagnetic

energy which is nothing, but a pulse. A pulse here, again a pulse here, again a pulse here

and so on.

(Refer Slide Time: 13:31)

The  theory  of  optical  interference  states  that  at  a  point  total  electric  field  can  be

calculated based on linear superposition of electro magnetic plane waves because electric

fields are additive at a particular point. So, if I have two electric fields propagating along

the same direction E 1 and E 2, at this point total field is going to be linear combination

of these two linear superposition of these two electromagnetic plane waves.

For  the  given problem which  deals  with  only  two plane  waves  of  slightly  different

frequencies having the same maximum field amplitudes and traveling along the same



direction that is positive z direction, these two fields E 1 and E 2 can be represented by in

complex notation as E 1 equals E naught e to the power i omega 1 t minus k 1 z and E 2

equals E naught e to the power i omega 2 t minus k 2 z. Here we note that we have taken

two different magnitudes of k vectors because their frequencies are different and we have

seen that k is related to frequency. However, their directions can be same. ( Please look

at the slides for mathematical expressions)

(Refer Slide Time: 15:10)

Now, let us define omega average by omega 1 plus omega 2 by 2, k average as k 1 plus k

2 by 2 and delta omega as omega 1 minus omega 2 by 2 and delta k as k 1 minus k 2 by

2. 



(Refer Slide Time: 15:41)

If  we  insert  them  in  these  equations  and,  then  we  calculate  total  field  due  to  the

interference of these two electromagnetic waves propagating along the same direction,

we find after doing simple math we get this. And, if we employ this part is the complex

of this part is complex conjugate of this part. This is why we can write down a small like

cos theta 2 cos theta equals e to the power i theta plus e to the power minus i theta. With

this we get this final equation. ( Please look at the slides for mathematical expressions)

(Refer Slide Time: 16:46)



Now, if we take the real part of the total electric field we get two cosine functions. The

final expression becomes 2 E naught cos omega average t minus k average z cos delta

omega t  minus delta  kz.  The first  term associated  with this  omega average is  a fast

varying component. And, the second term associated with this delta omega is a slowly

varying component  of the resultant  electric  field because the difference between two

frequencies is very small and that is why delta omega is very small number, but omega

average is very high number, big number. ( Please look at the slides for mathematical

expressions)

These  two  components  are  shown  in  this  figure;  the  first  varying  component  is

represented by this oscillation and the slowly varying component is represented by this

oscillation. Therefore, interference of two plane waves of slightly different frequencies

propagating along the same direction yields a pulse which is nothing, but a product of

rapidly varying and slowly varying cosine waves. These points to two important features:

a plane wave with single frequency component can never produce a pulse and to realize a

pulse we need more than one frequency component.

(Refer Slide Time: 18:49)

However,  we must remember that  from any ultrafast  source it  could be oscillator,  it

could be amplifier  we produce a train of pulses just the way we have shown here, a

number of pulses coming at a particular repetition rate. This train of pulses will always



have slowly varying and fast varying oscillations which are represented by this equation.

This is the fast varying component; this is the slowly varying component.

(Refer Slide Time: 19:21)

But, instead of using this complicated mathematical form obtained for an ultrafast pulse

train  produced  due  to  interference  of  multiple  frequency  or  color  components  and

isolated propagating pulse can be approximately represented as E equals a t multiplied by

e to the power i omega average t minus k average z. We note here that we have kept the

fast varying component here, but this slowly varying component is approximated to an

envelope  function  and  this  approximation  is  called  slowly  varying  envelop

approximation.

This representation of an isolated propagating pulse is valid only when the period of the

field envelop a t. So, this is the field envelope a t, this is represented by a t, it looks like a

Gaussian function. So, one can think of a t equals e to the power minus a t square a

Gaussian  function  that  is  possible.  So,  this  SVEA,  Slowly  Varying  Envelope

Approximation,  is  valid  only  when  the  period  of  the  field  envelop  that  is  the

characteristic time over which the variation of a t occurs and the period of carrier wave

this part is representing the carrier wave part which is represented by this oscillation.

When these two periods are significantly different, then we can use this slowly varying

envelope  approximation.  In  general  for  pulses  longer  than  50  femtosecond  this

approximation is valid, but pulse is less than 10 femtosecond this approximation may not



be valid.  So,  the  whole  idea  is  that  if  the  characteristic  time scale  of  this  envelope

function is much longer than the characteristic time scale of this oscillation then we can

use  slowly  varying  envelope  approximation.  And,  we  can  approximate  this  slowly

varying component to an envelope function to get the isolated a second pulse isolated

ultrafast pulse.

We have to remember that this kind of equation representing train of pulses and this kind

of equation is representing isolated pulse, but both of them are propagating.

(Refer Slide Time: 23:09)

A pulse is also a propagating wave no matter whether we are representing in its isolated

form or in a strain or pulses form, but a pulse is a propagating wave. So, it should travel

with some velocity.  What  is  the velocity  of a  pulse? To find an answer we will  re-

examine  the  equation  obtained  from  interference  of  2  plane  waves  of  dissimilar

frequency components propagating along the same direction. The first component which

is omega average t minus k average z is the fast varying component  and the second

component delta omega t minus delta kz a slowly varying component.

The frequency of carrier waves which is given by omega average, this is associated with

carrier wave so, I have a pulse, envelope and then we have this carrier wave oscillation.

The velocity of a pulse is defined based on these two components, associated with the

fast varying and slowly varying component. Mostly this has been approximated to an



envelope function and this is representing carrier wave and we will define the velocity

with respect to these two components.

Already we have seen that the definition of velocity is given by the velocity of constant

phase fronts which means I have to take the time derivative of the phase and make it 0,

and we get the corresponding velocity. We have two different phases associated with fast

varying and slowly varying that is why we get two different velocities of a pulse. The

carrier wave fast varying component of a pulse travels with phase velocity.

So, the phase velocity is associated with this carrier wave which is defined by omega

average by k average. We get this expression by taking time average a sorry by taking

the time derivative of this function. Thus average or resultant frequency component of a

pulse travels at phase velocity. The field envelope of a pulse on the other hand travels

with group velocity  which is  defined by Vg, and Vg equals delta  omega by delta  k.

Again we get this expression by taking time derivative of this phase and make it 0.

And, if  we consider that we have many frequency components and considering very

small difference in frequency we can also write down Vg equals d omega d k. So, what

does it mean by this phase velocity and group velocity of a pulse? I will represent it with

my  hands.  This  curvature  representing  the  envelope  function  and  my  fingers  are

representing carrier wave. They remain locked in vacuum but, we have to remember that

this envelope function can travel with group velocity and carrier wave can travel at phase

velocity  and in vacuum they are same. So, they travel like this.  But, in a dispersive

medium  they  can  be  different  and  when  they  are  traveling  one  of  them  may  have

different velocity than the other.

So, the basic idea of group velocity and phase velocity comes from the fact that group

velocity is always going to be the velocity of the envelope function and phase velocity is

going to be the velocity of the carrier wave.



(Refer Slide Time: 28:15)

In vacuum Vp equals Vg, this is true only in vacuum which means that this is locked

when they are traveling. But, in medium particularly in dispersive medium they are not

equal and what happens this envelope function travels at  a different velocity and the

carrier wave travels at a different velocity and that is why it looks like this, when it is

travelling it is changing like this and that is represented here.

If you think about the tip of the envelope function and the tip of the carrier wave they are

different  at  different  time.  Here,  there  are  the  same position  then  there  is  a  slightly

difference, then more difference is evident here.



(Refer Slide Time: 29:31)

So, thus far we have seen that a pulse has a slowly varying component  called filled

envelope and a fast varying component called carrier wave. This is called time domain

representation of a pulse. Here we note that only time domain representation does not

feature all characteristics of a pulse. A pulse carries a number of frequency components.

Time domain representation only features resultant frequency, information in particular

phase or spectral phase or the phase of all spectral components is missing in the time

domain representation.

This  is  why  for  unique  representation  of  a  pulse  both  time  and  frequency  domain

representations are important. We will represent frequency domain representation of a

pulse very soon. However, before we go over the frequency domain representation will

closely look at an important feature of time domain representation. Under SVEA that is

slowly varying envelope approximation if a Gaussian filled envelope is assumed then we

can write  a  pulse as  a  t.  So,  that  was the general  expression of  an  isolated  isolated

propagating  pulse  where  a  t  is  the  envelope  function  and  this  complex  part  is

representing the carrier wave. So, a t is representing the field envelope and this part is

representing the carrier wave. ( Please look at the slides for mathematical expressions)

And, if we assume that a t can be represented by a Gaussian function e to the power

minus a t square where omega naught is the center frequency of the pulse, this is called

center frequency center frequency of the pulse. And, phi naught which is this, omega



naught is center frequency which is nothing, but omega average which we have seen

before. And, phi naught; we have introduced phi naught here, this phi naught is some

kind of initial constant absolute temporal phase which we have included. But, we have to

remember that total temporal phase may not be always linear with respect to time just

like here.

Here this  temporal  phase may not be always linear with respect  to time.  It can be a

complicated  function  of  time  and that  is  why the  more  general  form of  a  Gaussian

isolated propagating pulse we can write down as E naught absolute magnitude of the

electric  field  then  Gaussian  function  which  is  the  envelope  function  and  the  total

temporal phase. This is called temporal phase because this phase appears in the time

domain representation of the pulse; phi t can be a complex number of sorry complex

function of time.


