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Welcome back to module 4. In this module, we will be continue more discussion on

Nonlinear  Effects  and  Dispersion  Effects,  which  originates  due  to  propagation  of

ultrafast pulse in dielectric medium. We have seen already that when an ultrafast pulse

propagates  through  dielectric  medium,  it  experiences  both  nonlinear  and  dispersion

effects.

We  have  also  seen  that  nonlinear  effects  can  be  realized  in  the  time  domain,  but

dispersion effects cannot be realized in the time domain. Dispersion effects can only be

realized  in  frequency  domain.  We  will  go  over  the  details  of  a  few  nonlinear  and

dispersion effects which originates from propagation of an ultrafast pulse in a dielectric

medium.



(Refer Slide Time: 01:26)

We will begin with full derivation of self phase modulation. Self-phase modulation has

been introduced in our earlier  lecture.  This self-phase modulation originates from the

intensity dependent refractive index which we have seen in the nonlinear effects already.

The  intensity  dependent  refractive  index  nonlinear  refractive  index  is  nothing  but

vacuum refractive index n naught plus this intensity dependent refractive index.

What it suggest is that, if I have a medium and an ultrafast pulse propagating will assume

that the Gaussian profile it has, it means this is a special profile is Gaussian which is

maximum this is I naught maximum and when its propagates through the medium what

happens, the medium experiences intensity high intensity. The peak power will be very

high,  that  is  why  intensity  would  be  very  high  and  due  to  this  intensity  dependent

refractive index.

So, what does it mean it means that if we look at the pulse which is propagating through

the medium if I take this dotted line and which is representing the lesser diameter of the

laser beam then it is quite clear that the refractive index here at the center would be

different from refractive index at the wings. This is the refractive index two different

refractive index we see and this is refractive index induced intensity induced refractive

index which we see in the medium is because of the third order nonlinear effect.

Now intensity dependent refractive index imposes an additional phase shift on the pulse

envelope during propagation. We have seen that refractive index can depend on intensity



following the equation given here, one of the consequences of this intensity dependent

refractive index is self-phase modulation which you have seen and also we have seen

that  self  focusing  was also  one  of  the  consequences  due  to  this  intensity  dependent

refractive index.

Now self-phase modulation what happens, I have a pulse which is let us say propagating

through the medium this is the input beam input pulse which is propagating through the

medium third order nonlinear effect, this is chi(χ)3 nonlinear medium and due to this

propagation  we get  an  another  pulse  and  what  we see  is  that  continuum generation

occurs here. (Please look at the slides for mathematical equations)

So,  if  the  pulse  this  is  time  domain  representation  what  if  I  represent  in  frequency

domain,  I  see  frequency  domain  representation  like  this.  This  is  omega  the  same

wavelength as omega naught and due to this propagation, we see large bandwidth. New

frequency components are generated on both side of this center wavelength and we see

that the large bandwidth is created from here.

So, ideally one can say that this pulse would be much shorter than this pulse, because it

has enough bandwidth, but it does not happen. In general when we do this self-phase

modulation  due  to  self-phase  modulation  we  create  white  light,  this  is  white  light

generation,  we will go over the derivation,  this is white light generation because big

continuum  we  create  that  is  why  we  call  white  light  generation,  many  frequency

components we in create here.

Now, ideally one can say that due to this large bandwidth one can say that the pulse

duration will be much shorter than the input beam but generally that does not happen

because we know that dispersion will actually elongate the pulse. So, although we have

enough bandwidth to create a short pulse but another condition to create short pulse is

the mode locking and we have to bring all the phases all the frequency component in

phase and that does not occur due to dispersion.

So, the mediums dispersion will not allow us to have much shorter pulse. It will broaden

the  pulse;  it  will  elongate  the  pulse  in  time.  At  the  same time it  will  create  a  new

frequency components. That is why it is called white light generation. White light means

it is including all the visible light frequency components. So, it creates a continuum. We

will take a look at how we create this continuum in the self-phase modulation process.
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To visualize the effect of the self phase shift on the pulse while propagating through the

dielectric medium, let us express the electric field of an incident pulse propagating in z

direction  just  like  the one incident  pulse this  incident  pulse we can write  down E z

comma t equals a z comma t e to the power i omega naught t minus k naught z. So, this is

the input beam which is propagating which will propagate through the medium. (Please

look at the slides for mathematical equations)

Now, we will assume that we have a nonlinear medium of thickness L as shown here

upon entering the nonlinear optical medium k must be expressed in terms of nonlinear

refractive index. That is the general k should be reflected. So, in the medium I will have

k, in the vacuum I will have k naught that is the vacuum wave vector, but the moment it

enters the medium I will not be able to use this k. I have to use I will not be able to use k

naught. I have to use the intensity dependent k which is nothing, but 2 pi by lambda

naught.  This  k  naught  is  going to  be 2 pi  lambda naught  then n nonlinear  which is

nothing but  a  nonlinear  refractive  index. (Please  look at  the  slides  for  mathematical

equations)

So, that is the way we have to express in the medium. So, if we if we express that in the

medium, then at z equals 0 at z equals 0 this distance at z equals 0, field can be expressed

as 0 t which is nothing but a 0 t into e to the power i omega naught t at z equals 0 but at z

equals L distance what we get after propagating through the medium of thickness L, the



field can be expressed as E L t which is nothing but a L t e to the power i, then omega

naught  t  minus as  I  mentioned before that  we have to  use this  k  which depends on

nonlinear  refractive  index  which  is  nothing  but  2  pi  by  lambda  naught  nonlinear

refractive index multiplied by L distance. (Please look at  the slides for mathematical

equations)

Now, combining these two equations what I get, we get that this a L t e to the power i

omega naught t omega naught t then minus 2 pi lambda naught. Now nonlinear refractive

index is nothing but n naught plus n 2 I, that we have seen previously multiplied by L.

So, which can be written as L t e to the power i omega naught t minus 2 pi by lambda

naught n naught L multiplied by e to the power minus i 2 pi by lambda naught n 2 I

which is intensity depends on z and t and multiplied by L. (Please look at the slides for

mathematical equations)

So, what we see here is that this part this part can be written as a L t e to the power i

omega naught t minus this is k naught L if I did not have the medium. That is k naught L

multiplied by e to the power minus i 2 pi by lambda naught n 2 I L. So, what we see here

is that this field after propagating this field is after propagating through the medium this

field  we  get  after  propagating  through  the  medium.  (Please  look  at  the  slides  for

mathematical equations)

Now this field is nothing but the vacuum field, this is the field which we should have

expected  if  we  did  not  have  this  medium.  Now  this  is  the  vacuum  field  which  is

augmented by another phase factor this whatever we get in the complex notation e to the

power this exponential complex notation we call it phase.

So, additional  phase is introduced and that  is why we are saying that this  additional

phase  coming  due  to  its  own  intensity  that  is  that  is  why  it  is  called  self-phase

modulation. So, you are modulating you are augmenting its own intensity profile by its;

it  by  additional  phase  factor  additional  phase  factor  is  coming  due  to  the  intensity

dependent intensity dependent refractive index. So, we can write down that this field is

nothing but E 0 t field which is equivalent to E 0 2 field and what propagated due to L

distance multiplied by minus i 2 pi by lambda naught n 2 I L. (Please look at the slides

for mathematical equations)



This is the mathematical expression for self phase modulated pulse after propagating L

distance in third order nonlinear medium. We note that time dependence of the additional

temporal phase, this is also complex temporal phase. We call it complex envelop phase.

Whatever  comes in  the  complex notation  that  is  the  envelop phase according to  the

definition  which  you  given  which  we have  given  in  module  two  so,  this  additional

temporal  phase  comes  due  to  self-phase  modulation  and  the  induced  phase  change

induce phase change in self-phase modulation therefore, arises only from the intensity

dependent refractive index of the material.

So, this intensity dependent this part is actually controlling the additional phase which is

introduced to the pulse. So, the pulse this pulse would have been similar or the same

after propagating for the L distance, but now I have introduced a new phase to it, a new

phase has been introduced and that phase is nothing but e to the power minus i 2 pi by

lambda naught n 2 I L, this new phase has been introduced to this pulse and effectively

the pulse is now chirp. We will prove how we are getting the chirp pulse very soon.

(Please look at the slides for mathematical equations)

(Refer Slide Time: 14:50)

Now, we can calculate the instantaneous frequency. Instantaneous frequency we have

defined instantaneous frequency in a module two and the by definition instantaneous

frequency  is  nothing,  but  the  time  derivative  of  the  total  phase.  Total  phase  phi  t

temporal phase is given as omega naught t minus k naught L minus 2 pi by lambda



naught, n 2 I which is function of z t L, we will; for the time being we will call  it,

because we are dealing with time domain in the perspective of this problem so, we will

call it I t time dependent intensity profile multiplied by L. (Please look at the slides for

mathematical equations)

Now if we take the first derivative we get instantaneous omega which is nothing but the

first derivative of this total temporal phase which we get minus 2 pi by lambda naught n

2 d I d t multiplied by L. Now, if we assume that I has intensity profile this temporal

intensity profile is represented by a Gaussian beam Gaussian pulse I t equals I naught e

to the power minus a t square. (Please look at the slides for mathematical equations)

If we consider that then the first derivative of this function is going to be minus 2 a t

multiplied by I naught e to the power minus at square which is nothing but minus 2 at

multiplied by I t there is the intensity profile. So, thus in instantaneous frequency for

shelf  phase modulated  Gaussian pulse can be written  as omega naught  plus 4 pi  by

lambda naught n 2 a t I L. So, this is your instantaneous frequency. (Please look at the

slides for mathematical equations)

Now if we recall that if we did not have the medium, then we could have written the

temporal phase as omega naught t minus k naught z. In that case the first derivative with

respect to t which is instantaneous omega would be omega naught and; that means, it is a

transform limited pulse because there is no chirp introduced. Chirp what does it mean it

is  chirp  we  when  you  introduce  a  chirp  to  the  pulse,  we  sweep  the  frequency

instantaneous frequency as a function of time that we are not doing here. So, if we had a

transformative pulse propagating in vacuum then we should have got this, and it means

that we did not have introduced any chirp.

But  our  medium  is  self  phase  modulated  medium  and  that  is  why  instantaneous

frequency will vary and it will vary as a function of t, it is a complex very complicated

function it is t multiplied by I t that is the temporal behavior we have introduced and that

is why it is clearly that instantaneous omega instantaneous frequency depends on time,

which means that we have introduced chirp in the shelf phase modulated pulse. (Please

look at the slides for mathematical equations)

Now we shall reexamine the self phase modulated phenomenon in frequency domain.

Why? Because we want to prove that during this self-phase modulation, we are not only



introducing chirp in the pulse, it is not a linear chirp. If it was a linear chirp, we could

have seen some kind of function of t but it is a very complicated function; it is a product

of t and I, t Gaussian function and t and so, it is a very complicated chirp we introduced

in the self-phase modulation process. 

What we want to know is that, if we introduce this chirp and finally, we have the time

domain expression for the self phase modulated pulse, can we get the spectrum out of it;

and yes, answer is yes, we will be able to get the spectrum can be calculated from this

Fourier transform.

(Refer Slide Time: 19:29)

So,we know that this E this E L t, this field was expressed as E 0 t. This is the field

which we could expect without the medium but now we are introducing new phase to the

pulse due to self-phase modulation and that is lambda naught then n 2 I then L. So, this is

this is the final expression of the self-phase modulated pulse. All we need to do if we

want to find out the frequency then, we have to get the Fourier transform and then we

have to  take the  square modulus  of  this. (Please look at  the slides  for  mathematical

equations)

So, s omega s omega that is the power spectrum is nothing but self phase modulated field

in the frequency domain square modulus of that and that is nothing but Fourier transform

of the time domain field which is nothing but E 0 t e to the power minus i 2 pi by lambda

naught n 2 I L e to the power minus i omega t d t; that is the Fourier transform square



modulus. To obtain so, now, now in order to get this Fourier transform probably we have

to use numerical method. (Please look at the slides for mathematical equations)

But we can take one very simple approach and what we can do; we can expand i in

exponential series expansion to the first order only. So, what we can say that this I we

have said that it follows a Gaussian behavior which is nothing but this one which looks

like this  and this  is  t equals 0.  It  is centered at  t  equals 0 and this  is  the maximum

intensity I naught. So, this is the when temporal behavior of the of the intensity profile.

What we are going to do is that to the first order we are going to expand this equation

expand this function and if we expand this function approximately, we can write down

that  a  t  square  I  naught  1  minus  a  t  square.  We are  doing  this  simplification  over

simplification just to get an idea or prove analytically that we are going to expand the

spectrum we are  going to  generate  new frequency  component  when the  input  pulse

propagating through the self  phase modulated medium. (Please look at  the slides for

mathematical equations)

So, and in this approximation if we do this approximation what will happen, under this

approximation we are not to off. We are actually if we plot this 1 minus a t square then it

is going to be something like this is something like this a t square. So, so, what we are

missing is that the wing part is missing,  but mostly it  is describing the variation the

Gaussian variation near t equals 0.

So, we are good to go with this with this function and if we do that, then the if we plug

that in; if we plug this in here then what we get, we can write down that this is nothing

but minus infinity to plus infinity minus infinity to plus infinity then e to the power; e to

the power minus a t square e to the power i omega naught t minus k naught L. (Please

look at the slides for mathematical equations)

This is the vacuum contribution this is the vacuum contribution and then additional phase

which has been introduced that is 2 pi by lambda naught n 2 I; I will write down 1 minus

a t square and then 1 minus a t square multiplied by L multiplied by e to the power minus

I omega t d t then square modulus and this expression can be simplified and one can

write  down  the  simplified  expression  as  following. (Please  look  at  the  slides  for

mathematical equations)



One can write down the simplified expression as e to the power minus i k naught L

multiplied by e to the power minus i 2 pi by lambda naught n 2 L then square root of pi

by a minus i 2 pi by lambda naught n 2 a L multiplied by e to the power minus omega

minus omega naught square divided by 4 a minus i 2 pi by lambda naught n 2 a L; n 2 a

L  this  is  going  to  be  square  modulus. (Please  look  at  the  slides  for  mathematical

equations)

(Refer Slide Time: 27:21)

Now what we will do here; we will represent this to be b. So, we can write down ok, we

erase this part and we can we can say that this 2 pi by lambda naught n 2 a L, this part is

nothing but b. So, if we express that then what we get is that this field e L omega, this

field can be written as e to the power minus i k naught L e to the power minus i 2 pi by

lambda naught n 2 L multiplied by square root of pi by a minus i b.

That we can write down multiplied by e to the power minus omega minus omega naught

square divided by 4 into a minus i b, we can write that out and finally, we can multiply

with a plus i b. So, i can multiply a plus i b. So, we can write down here also a plus i b s.

Similarly, I can do the same thing here within this square root and finally, I can get this

expression. (Please look at the slides for mathematical equations)

The expression which I will get is that I will have one more expression for square root of

a plus i b then e to the power minus i k naught L e to the power minus i 2 pi by lambda

naught n 2 L square root of pi by a square plus b square e to the power minus omega



minus omega naught square multiplied by a plus i b by 4 a square plus b square. (Please

look at the slides for mathematical equations)

So, we get this expression and remember we are interested only in the square modulus

term of this, because we are interested on the spectrum only and if we want to if we want

to get the square modulus of it we can easily say that instead of square root of a plus i b

we can write down this we can we can convert this complex number a plus i b to c plus i

d.

Any complex number can be converted to another complex number and if we do that

then all we are interested in is s omega which is nothing, but the square modulus of the L

omega and e  L omega and that  is  that  can be expressed as e to the power minus a

multiplied by omega minus omega naught square divided by divided by 2 a square plus 4

pi square. I am inserting the value of b lambda naught square n 2 square a square L

square. This is what we get. So, this is the final expression for the spectrum which we are

expecting associated with this self-phase modulated pulse(Please look at the slides for

mathematical equations).

(Refer Slide Time: 31:25)

So, here we are interested in the shape of the power spectrum we can consider only the

real part and the normalized maximum amplitude and we see that the power spectrum

has an expression like this, which suggests that this denominator in this expression in a

Gaussian function defines the width of the Gaussian. So, basically this is defining the



bandwidth of the Gaussian and which suggests that this bandwidth is going to depend on

L, the distance and that is exactly we have depicted here.

Let us say we started with this is the input beam spectrum and we started and this is the 0

position, we started with this spectrum the bandwidth was let us say delta omega. Now as

it propagates through the medium after propagation of L distance what we see is that new

frequency  components  has  been  generated  and  these  frequency  components  are

generated due to self-phase modulation process.

So,  it  is  evident  then  new  frequency  components  are  generated  due  to  self-phase

modulation. Extra frequency components brought in the spectrum on both sides of the

center wavelength. This is called white light generation. We have already mentioned that

when  ultra-fast  pulse  propagates  through  a  medium it  experiences  dispersion  effect.

Material  dispersion always stretches a pulse in time. So, white light pulse must be a

broad pulse although it contents large bandwidth suitable for a short pulse.

So, just looking at the power spectrum evolution, one can say that because we have large

bandwidth now, we have very short pulse here but that does not occur and that does not

occur just because dispersion will start playing role immediately.  So, the moment we

create new frequency components in the medium that will face the dispersion and what

does it mean by dispersion red light or the high sorry low frequency components will

travel at a faster velocity than the high frequency components and that will stretch the

pulse in time.

So, having what it suggest, it suggest that having the enough frequency components does

not mean that we should have short pulse and that is the reason time bandwidth product

is  always  written  like  this  way;  delta  nu  delta  t  is  greater  than  equals  0.441  for  a

Gaussian  pulse.  Why?  It  suggest  that  for  a  given  frequency  component  for  a  given

bandwidth the let us say I have a certain bandwidth I can have a shortest duration pulse

delta t which is defined by this equation but rest of the pulses are going to be always

broader or the longer than the short shortest duration pulse.

The shortest duration pulse for a given bandwidth is called transformative pulse, rest of

them are chirp pulse. What kind of chirp we have that depends on the temporal behavior

of the instantaneous frequency. So, this is all about self-phase modulation. We discussed



this self-phase modulation previously, but this time we are giving more details and there

will be derivation of this power spectrum.

(Refer Slide Time: 35:39)

We have seen that ultra-fast pulse carries many frequency components. So, it propagates

through a dispersive material and when it propagates through the dispersive material it

experiences dispersion. In every ultra-fast optical spectroscopy lab different optics such

as  lens,  polarizer,  nonlinear  crystals  etcetera  are  used  and  when  ultra-fast  pulse

propagates  through  these  optics  it  experiences  dispersion.  Effect  of  dispersion  on

propagation  of  ultra-fast  pulse  is  unavoidable  because  every  medium  exhibits  some

extent of dispersion and we know that phase velocity that Vp phase velocity, Vp depends

on the refractive index c by n omega. It inversely depends on refractive index like this.

So, that is why the velocity of the red component which is low frequency components

which would be much larger than velocity of the blue component, the high frequency

component. So, this two different frequency component will have different velocities and

that is why pulse will elongate in time and that is the effect we have already seen. Effect

of dispersion cannot be realized with time domain description of the pulse it can only be

realized  with  frequency  domain  description  of  the  pulse.  Therefore,  to  obtain  a

mathematical formulation of propagation of ultra-fast pulse in a dispersive medium, we

have to treat ultra-fast pulse in frequency domain.



We may begin with transform limited pulse in Gaussian pulse which can be written as E

t z equals E naught e to the power minus a t square e to the power i omega naught t

minus k naught z. That is the transformative pulse. All we need to do is you have to

convert to frequency because in order to understand dispersion effect we have to go to

the frequency domain; why, I will explain immediately very soon. (Please look at the

slides for mathematical equations)

E omega z that is the Fourier transform of this  function which is nothing but minus

infinity to plus infinity E naught e to the power minus a t square e to the power i omega

naught  t  minus k naught  z  e  to the power minus i  omega t  d  t.  That  is  the Fourier

transform and if we do the Fourier transform then we can write down E naught e to the

power minus i k naught z that comes out of the integral because it is does not depend on

time  minus  infinity  to  plus  infinity  then  e  to  the  power  minus  at  square  minus  2

multiplied by i omega minus omega naught divided by 2 then d t and we know this

integration we have done this integration before which is nothing, but E naught square

root of pi by a e to the power minus omega minus omega naught square divided by 4 a

multiplied  by  e  to  the  power  minus  k  naught  z.  (Please  look  at  the  slides  for

mathematical equations)

This is is time domain field profile which is centered at t equals 0 that we have seen

previously and this is represented by a Gaussian which is centered at omega naught. But

it has additional phase factor this k naught is constant for vacuum but it is not constant

for a medium and that is why what we did is that we have expressed in the dispersive

medium the magnitude of the wave vector must take more general form that is k omega.



(Refer Slide Time: 40:04)

So, that phi(φ) omega that is the that is related to the spectral phase phi omega should be

written as, k omega multiplied by L. L distances if it is travelling in a dispersive medium

and this  k  omega can be is  a  frequency dependent  unknown function  which can be

expressed and its value at k naught omega naught is known because it is this k omega

equals  k  naught  at  omega  equals  omega  naught. (Please  look  at  the  slides  for

mathematical equations)

So, this is this is known and its first derivatives are known also, I will show you how it is

known the first derivatives are related to its group velocity, group velocity dispersion and

group velocity, group velocity dispersions are related to their refractive indices. So, here

is the point; point is that if we express the ultra-fast pulse in time domain, then there is

no way you can express k in terms of a refractive index.

But if you express k in terms of frequency or if you express k in frequency domain then

there  are  physical  quantities  which  can  be  correlated  to  this  k  in  the  Taylor  series

expansion. So, the Taylor series expansion will write down this k naught that is the initial

value plus the first  derivative with respect to omega at omega naught,  that is omega

minus omega naught multiplied by L plus the second derivative, which is d 2 k d omega

2 at omega naught omega minus omega naught square L plus blah blah blah. All those

terms can be introduced. (Please look at the slides for mathematical equations)



And we know that by definition that is nothing but k naught plus 1 by Vg group velocity

multiplied by omega minus omega naught into L plus half of this is nothing, but group

velocity dispersion 1 by Vg, that we have seen omega minus omega naught square L plus

blah blah blah. All these terms are known Vg this in the previous lecture we have seen

that they are all related to refractive index they are all related to refractive index and

refractive index is something which can be experimentally determined that is why this

spectral phase this omega the omega of a phi omega is not exactly spectral phase because

spectral  phase  has  to  be  related  to  the  spectrum  but  it  is  related  to  the  frequency

dependent  phase  factor  which  comes  in  the  frequency  domain  representation  of  the

electric field.

So, what we see is that in the time domain there is no scope for us to represent k in terms

of  different  physical  quantities,  which  will  account  for  the  dispersion  effect.  But  in

frequency domain there is a possibility to express k in terms of physical quantities which

is directly connected to the dispersion. That is material refractive index n and that is the

reason why we have to express the pulse in the frequency domain.

(Refer Slide Time: 43:36)

Now,  this  can  be  this  is  so,  the  first  term  here  we  know  that  this  is  the  vacuum

contribution, then second term here it we know that this is coming due to group velocity.

This group velocity will introduce group delay which is which introduced in the pulse

because of the dispersion effect and that creates the carry envelop phase and the third



term  is  the  second  order  spectral  phase  term;  which  is  responsible  for  GVD group

velocity dispersion we which we have already seen. What is our task next; we are going

to do the derivation for the pulse which is experiencing this GVD.

So, I have a pulse transform limited pulse propagating through the medium like this way

I have a  pulse propagating  through the medium and this  medium has  this  kind of  a

dispersion effect second order spectral phase we will have to introduce and that is group

velocity dispersion and due to this dispersion we would like to see what is going on in

the pulse.

Definitely we are going to introduce a chirp and a chirp pulse is nothing but something

like this. So, frequency is changing over the over the pulse as a function of time. So, that

is called chirp which introduced a chirp. We will find out this with delta t and this with

delta t and we will find out what is the relationship among them. We will stop here; we

will continue this module in the next lecture.


