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Dispersion Effects

Welcome to module 4 of this course Ultrafast Optics and Spectroscopy. In this module

we  will  study  Dispersion  Effects  which  is  experienced  by  ultrafast  pulse,  while

propagating through the dielectric medium. 

 (Refer Slide Time: 00:50)

We have already mentioned that when ultrafast pulse propagates through a medium it

experiences  two effects.  The first  one we have  already studied  high intensity  effect,

which is collectively called non-linear optical effects and a second effect experienced by

the pulse while propagating in dielectric medium is large bandwidth effect which is call

dispersion effect. 

In this module we shall learn dispersion effects experienced by an ultrafast pulse, when it

propagating through a dielectric medium. Material dispersion always stretches a pulse in

time and that is why a short pulse here the pulse duration is expressed by delta t before

propagating through the medium and this delta t time duration of a pulse is defined as the

full width half max of the intensity profile which will become larger as it propagates
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through the medium.  This  is  delta  t  after  dispersion and that  is  unavoidable for any

dielectric medium. 

 (Refer Slide Time: 02:22)

So, this is the topic of the present module, but what is dispersion by the way? Dispersion

is a variation of refractive index as a function of frequency which is shown here in this

figure. We see that in the visible regime and UV regime or IR regime where most of the

spectroscopies  are  performed  refractive  index of  the  medium is  much higher  than  1

refractive index of the medium in IR and visible or UV regime they are greater than 1,

but in the X-ray regime the medium dispersion becomes less than 1. 

And there is a consequence for it we will go over the consequences later, but one thing

we  should  note  here  that  in  the  normal  dispersion  regime  refractive  index  always

increases as a function of frequency. 

 (Refer Slide Time: 03:35)



This has two important effects in light propagation. The first effect is temporal effect and

the second effect is spatial effect. In temporal effect we have already come to know that

phase velocity depends on refractive index Vp. It depends on the refractive index and

refractive  index  depends  on  frequency  that  is  why  phase  velocity  of  red  light  low

frequency component would be would be much higher than phase velocity of the blue

light  that  is  why  if  I  have  a  combination  of  red,  blue  and  yellow  lights,  they  are

propagating in vacuum. And once it  is  propagating through the medium a dispersive

medium, then we see that red light propagates at faster velocity than the blue light. 

So, this is the temporal effect we see which means that if I take this analogy and then try

to understand what might happened to the ultrafast pulse, one can think of like this way.

I have red and blue components in the vacuum they are propagating, but the moment it is

propagating through the medium what will happen?

This red component would travel at a faster velocity than blue component and slowly I

am stretching the pulse and this effect is unavoidable effect for any medium we will

calculate  how much  stretching  will  experience  very  soon.  Another  effect  dispersion

effect is spatial effect according to Snell’s law when light propagates across an interface;

angle of refraction is inversely proportional  to the refractive index of the material  or

medium.  And  this  inverse  relationship  suggests  that  if  light  propagates  from  low

refractive index material to high index material, higher frequency light bends more as

illustrated here.



So, blue light will bend more than red light and we will find out what are the effects one

can anticipate  for  the  ultrafast  pulse when ultrafast  pulse is  propagating  through the

medium.

 (Refer Slide Time: 06:42)

An ultrafast pulse carries a number of frequency components that we have already seen

we have represented ultrafast pulse and the representation was following we can remind

ourself. We have represented the electric field in time domain as a t multiplied by e to

the power i omega naught t minus k naught z. This part is career web part oscillatory part

and this part is field envelope. (Please look at the slides for mathematical expressions)

And then we get the intensity which is nothing, but a t square modulus and when express

intensity  of an ultrafast  pulse assuming a Gaussian pulse like this  ready centred at  t

equals 0. The moment I do Fourier transform of this time domain pulse, I get a frequency

domain description of the field and which suggests that, the frequency domain field is

centred at omega naught equals at the centred omega naught. 

So,  frequency domain field is centred at  omega naught and it  has a bandwidth delta

omega.  So,  when an  ultrafast  pulse  propagates  through a dispersive  material,  it  will

experience both temporal and spatial effects due to dispersion in every ultrafast optical

spectroscopy lab different optics such as lens, polarizer, non-linear crystals are used and

when ultrafast pulse propagates through these optics it experiences dispersion. Effect of



dispersion  on  propagation  of  ultrafast  pulse  is  unavoidable  because  every  medium

exhibits some extent of dispersion. 

 (Refer Slide Time: 09:09)

Effect of dispersion cannot be realised with time domain description of the pulse, it can

only  be  realised  in  frequency  domain  description  of  the  pulse  and  that  is  why  to

understand the dispersion effects, we will express time domain pulse here we have taken

a  Gaussian  pulse  in  frequency  domain  by  Fourier  transform.  The  transform limited

Gaussian pulse is expressed by E naught e to the power minus at square that is the field

envelope Gaussian field envelope and this is the carrier wave. Once we get the Fourier

transform done then  we get  this  equation,  this  expression  for  field  in  the  frequency

domain. 

This expression shows that in the frequency domain we get another Gaussian envelope

and this is spectral phase. A phase factor which comes in frequency domain that is why it

is called spectral phase. Now this equation is valid when a pulse propagates in vacuum

that is why k naught is constant it is not varying, it is not changing. 
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In a dispersive medium, however, magnitude of wave vector must take more general

form k omega. Consequently spectral phase of the pulse is controlled by k omega z this

term. So, instead of k naught z we have to consider k omega z k is the function of omega

and the moment we do that, we can express it in Taylor series expansion because the k

omega naught value is known which is the vacuum value and we have to expand this

function around omega that is why we can use this Taylor series expansion.

The  moment  we  look  at  the  Taylor  series  expansion  we  get  the  spectral  phase

description, which includes vacuum contribution k naught L that is the L distance. So,

instead of z we are considering L and the first term which exist for plane wave as well is

the natural phase advance due to propagation through L distance k naught L. 

So, if you look at the expression for frequency domain field it looks like this multiplied

by e to the power i  phi  omega.  Now second term which we get  is  related  to  group

velocity, the velocity of the envelope function. We remind our self in a pulse I have two

components envelope and the carrier wave. Envelope is this one and the carrier wave

which is the oscillatory part and in vacuum they travel when their phases are lot like this

way. And we said that there are two different velocities phase velocity the velocity of the

carrier wave and group velocity of the envelope. 

So, group velocity is expressed by this d omega d k which exist in pulse only and the

third term here is related to variation of group velocity as the function of frequency. So,

just little modification of this equation simple modification by introducing group velocity



we get this term in the second order spectral phase. So, this is your second order spectral

phase. Second order spectral phase. In the second order spectral phase we get this group

velocity dispersion this is the definition we are giving based on Taylor series expansion.

(Please look at the slides for mathematical expressions)

Now when a pulse propagates through a dispersive medium, additional phase is added to

the propagating pulse. Because in addition to k naught L we get start getting all these

terms  and  I  can  have  even  higher  order  terms  as  well  depending  on  the  level  of

dispersion we have. Level of dispersion an ultrafast pulse experiences while propagating

through the medium decides how many terms in this equation we should consider. 

This undoubtedly depends on the experimental conditions. However, to understand the

influence of each term on the propagation of an ultra fast pulse one can think of adding

systematically each term and subsequently check the effects. If only the first term in the

equation is introduced; that means, this one the pulse does not experience any dispersion

at all,  it is just like vacuum propagation. This is true for the vacuum propagation. In

order to see the dispersion effect we should introduce at least first two terms; that means,

these two terms we have to introduce to get the dispersion effect.

 (Refer Slide Time: 16:08)



So, the first task would be we will introduce this two terms the first two terms and then

we will plug that in the frequency domain field which was obtained previously pi by a e

to the power minus omega minus omega naught square divided by 4 a multiplied by e to

the power minus i. (Please look at the slides for mathematical expressions)

Then instead of k naught now I have to write down k naught plus omega minus omega

naught divided by vg z. So, this was the expression for the field in frequency domain if

we consider the first two terms and then all we need to do is we have to convert it to time

domain  by  inverse  Fourier  transform.  (Please  look  at  the  slides  for  mathematical

expressions)

In this we will consider a new variable omega bar. So, this integration will be performed

with omega bar as variable and omega bar is defined as omega minus omega naught that

is just simplifies the problem and then we get this expression in time domain. And now if

we define another term group delay which is nothing, but L by vg. This L by vg or z by v

g we have here we are giving another definition to this term. Here GD group delay is

defined as L by vg this  equation represents  the outgoing pulse in  time domain after

experiencing first two terms due to dispersion and L by vg distance divided by velocity is

nothing, but time that is why it is called group delay what does it mean by this delay?

(Please look at the slides for mathematical expressions)

I will just talk about it, but this is the way definition is coming and final expression for

the outgoing pulse after experiencing them. So, I have an medium a pulse is propagating

through the medium and we have assumed that medium is giving me only this dispersion

effects. So, it is called first order diffraction effects is included.

 (Refer Slide Time: 19:15)



What does it mean by this delay? We have already seen that optical pulse is synthesized

by interference of electromagnetic waves with slightly different frequency propagating

along the same direction and due to that interference. So, I have a number of frequency

components this is one, second frequency components, then third frequency component

and  due  to  the  interference  we  see  that  at  this  point  of  time  we  get  constructive

interference and that is why pulse looks like this. 

This is the resultant electric field how is changing. And we have also seen that a pulse

has two velocities phase velocity and group velocity. Phase velocity is defined by v p

phase velocity is the velocity of the carrier wave which is defined by omega average by k

average and group velocity is defined by d omega d k that these are the definitions we

have already found in module 2. Now in any dielectric medium dispersion relationship

can be written as k equals omega n by c this also we have found previously. (Please look

at the slides for mathematical expressions)

If we take the first derivative of k with respect to omega to obtain group velocity, then

we get this expression simple math and then if we insert refractive index definition that is

the speed of light  in vacuum and the speed in  the medium. Then finally,  we get  an

expression which connects v g and v p phase velocity and group velocity and we are

trying to find out what is the relationship between phase velocity and group velocity in a

medium. Because dn d omega there is a slope, this dn d omega and we have already

shown that in non absorbing regime refractive index will always increase with respect to



omega, which means that the slope would be always positive. (Please look at the slides

for mathematical expressions)

Because slope is  positive,  omega is positive,  n is positive in this  equation,  omega is

positive n is positive v g would be always less than v p. Therefore, in non absorbing

medium relative phase of envelope and carrier wave changes due to phase and group

velocity mismatch and that is demonstrated in this figure. If you look at the tip of the

envelope and tip of the carrier wave, then we find that in the first pulse they are at the

same time, but in the second pulse at it is as it propagates through the medium, the tip of

the envelope and tip of the carrier wave they are separated in time, it shows a mismatch

again it is further separated as it propagates through the medium. So, v g is always less

than v p in the medium and that is representing the group delay which we discussed in

the previous slide. (Please look at the slides for mathematical expressions)
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Now, if we assume that due to propagation of pulse through a medium only additional

phase  which  is  introduced  is  due  to  group  velocity  dispersion,  previously  we  have

included  group  velocity  only  now  you  are  including  second  order  spectral  phase,

similarly we are representing electric field in the frequency domain and we have taken

second  order  spectral  phase  and  we  are  now  defining  another  term  GDD;  GDD  is

nothing, but this term which we obtain from this equation is just a definition group delay



dispersion and here we remind ourself  that,  GVD is defined by this  definition again

comes from the Taylor series expansion. 

So, with this GDD definition we solve and then we get the time domain field by inverse

Fourier transform and taking the full width half max. So, once we get the field in time

domain, we can get intensity in the time domain from field to intensity we know how to

do that. 

(Refer Slide Time: 25:22)

And then once we get the intensity we can take the definition of full width half max of

the intensity to get the width because we are finally, interested in the width and we get an

equation a very simple equation this one what does it mean? Here delta t chirp we have

to  remember  that  anytime  for  a  given  spectral  bandwidth  if  number  of  frequency

components are fixed, then anytime we are trying to broaden a pulse, it means we are

introducing a chirp. (Please look at the slides for mathematical expressions)

So, dispersion will always broaden a pulse that is why we are introducing chirp. So, we

are defining this pulse to be chirped pulse and that delta t is the intensity full width half

max of this pulse. On the other hand delta t g is before dispersion this one again this is

also intensity full width half max and this equation shows the this equation shows how

this pulse duration and this pulse duration are related. It suggest that as we increased

GDD will have broader pulse. 



As already stated earlier the dispersive pulse broadening is unavoidable in any optical

medium because all  optical  material  exhibits  positive  GVD and how do we know is

positive  GDD?  We  know  from this  equation  we  know  the  definition  of  GVD  this

definition is coming from Taylor series expansion where vg is expressed like this and

then we can calculate GVD we get this expression, in this expression again we have first

derivative and second derivative. We have to remember that refractive index increases as

a function of frequency in non absorbing medium non absorbing regime that is why these

terms are all positive that makes GVD always positive.

So, you will get a positive GVD from every material and due to this positive GVD, the

pulse will always broaden in time it will be stretched in time. So, it is desirable that we

find out an optical material which features negative GVD as well because we have to

compensate the pulse. For some reason if the pulse is propagating through a dispersive

medium it will always broaden and chirp will be introduced.

 (Refer Slide Time: 28:44)

So, I need another medium which will introduce negative GVD to get my broaden pulse

back to the compressed pulse. This table shows GDD which is always positive and I

suggest that the unit of this GDD is suggesting that femtosecond square divided by mm.

So, per millimetre propagation of the pulse it will introduce this amount of GDD and if

we plug that in we will be able to find out what will be the final pulse duration after the

propagation. 



 (Refer Slide Time: 29:35)

Now,  as  I  have  told  you  that  dispersive  pulse  broadening  is  unavoidable  and  in

experiments there are many optics there are many transmission optics which we use that

is why pulse will always broaden and we need a material  which will recompressed a

pulse  introducing  negative  GVD.  Unfortunately  there  is  no  material  directly  can

introduce  my negative  GVD prism and gratings  are  two optical  elements  which  are

capable to introduce negative GVD by means of angular dispersion.

So, here we have to use angular dispersion effect to introduce GVD. To understand this

angular  dispersion and it  is  effect  on in  producing negative  GVD, let  us assume the

centre  frequency component  of  the  pulse travels  along z direction  here  and k is  the

direction  of  any  other  frequency  components.  So,  this  is  k  and  centre  frequency  is

propagating omega naught propagating along z direction. 

A prism we know that light will bend due to angular dispersion and one can write down

the spectral phase if we recall it omega E omega that is the field in frequency domain is

expressed as A omega minus omega naught that is the envelope function and there is a

spectral component.  The spectral phase is expressed as k is a dot product of k and z

which gives me k z omega k z cos theta and k can be expressed in terms of omega by c n

that is dispersion relationship. So, finally, we get this spectral phase. (Please look at the

slides for mathematical expressions)
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And we are interested in second order spectral phase because that is introducing positive

GVD in material. So, we want to find out can we get negative GVD from the second

order spectral phase. So, when you take the second derivative with respect to omega, we

get this expression and if we assume that theta angular dispersion is very small, this theta

with  respect  to  omega  naught  centre  frequency  is  very  small,  then  sin  theta  can  be

approximately considered to be 0 and cos theta can approximately be considered as 1 and

we can reduce this second order spectral phase, what we find is that a negative signature

negative sign. Presence of this negative sign shows that negative GVD is possible to

achieve with the help of prism or grating. (Please look at the slides for mathematical

expressions)

So, in the end I let us say I have a short pulse I have many mediums through which light

is propagating the pulse is propagating and due to this propagation in the end I get a

broad pulse a chirped pulse as well. It has to be chirped otherwise we could not broad the

pulse. Now with the help of this negative GVD all material will produce positive GVD,

these are actually positive GVD with the help of negative GVD which is achieved by not

by any material, but angular dispersion we may compress the pulse again. 

There  is  enormous  application  of  this  negative  GVD in  the  construction  of  ultrafast

pulses  we will  study that  very soon. So,  with this  we have come to the end of  this

module, in this module we have studied group velocity dispersion meaning of positive

GVD, meaning of negative GVD, how to achieve negative GVD we will meet again in

the next module.


