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So, we have been discussing the 5 plane lattices in the last class. 
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And we discussed the oblique p lattice, we also discuss the; we discuss the oblique p 

lattice, we also discuss the rectangular p lattice. And we found that there are two ways in 

which we can represent this rectangular p lattice. One is to show the points along the line 

of symmetry and show the points half way between the lines of symmetry and both these 

will now give rise to the rectangular p lattice. So, if you consider this point, these four 

points now we will define our unit cell, these four points will define our unit cell and this 

is a primitive lattice. And the two fold rotation axis will appear here, here, here, here 

because any plane lattice will have a twofold symmetry. 

And therefore, the plane lattices will always have a twofold symmetry at the origin and 

that one unit translation. So, that is already represented along with that we have the lines 

of symmetry. So, the lines of symmetry will repeat at these positions and as we 

discussed, whatever is the symmetry at the origin and one unit translation will 

automatically appear at halfway point because of the heat translation periodicity. So, the 



similar thing happens here. Even though these points are in the middle of these lines of 

symmetry, the unit cell is still having one point which is which is now again a primitive 

rectangular lattice. 

So, we can also have another type of a lattice where we have the overlap of the lines of 

symmetry the way in which these are repeated. So, we take this unit, the one dimensional 

unit, overlap this one dimensional unit with this one dimensional unit and that is 

represented here. So, we have this line of symmetry, this is the repeat distance a and this 

is the repeat distance b; here the points are with respect to this dimension. So, we have 

this point, this point, this point and this point and between them we inter leave this one 

now. Because of the fact that we inter leave this fellow, this one has come in between 

and that also has a line of symmetry by definition which we have given here.  

And therefore now, we see that there are lattice points are these four points and also a 

lattice point in middle and this now defines a different kind of a rectangular lattice which 

we call as the rectangular c lattice. So, the rectangular lattices there are two types; 

primitive as well as the central lattice and this is represented by this picture here. So, 

what happens is because of the fact that we have a centred position here, the property of 

this repeats at the centre and therefore, the property of whatever is happening here will 

also repeat at the centre.  

And so, we get additional two fold symmetries now placed at one fourth between one 

and half the additional symmetries are placed at one fourth, but there displaced by 

another one fourth. So, at one fourth, one fourth, we get a twofold axis and therefore, this 

now defines a new type of a plane lattice which is a rectangular c lattice. On the other 

hand, if we just have these alternate ones, but no occupancy of the middle, this is similar 

to the one above here and therefore, we will get a rectangular p lattice. 

So, f represent a rectangular p lattice corresponding to b; on the other hand, the e 

represents a rectangular c lattice where we have a centre. I think I should describe this 

again for the convenience of people who have a difficulty in understanding this. We have 

in a rectangular system, a equals b a not equal to b, but gamma is 90 degrees. The fact 

that gamma is 90 degrees will ensure that these two fold symmetries which came here 

without the presence of gamma being 90 will always represent at these positions. So, the 

moment we have a plane lattice, the two fold symmetry is will appear at the origin one 



translation along a, one translation along b and they will also appear along the half 

distances.  

Apart from that, the fact that a is equal to b and gamma is 90 degrees introduces a line of 

symmetry and this line of symmetry can be now represented in this one dimensional 

lattice by these points. The same one dimensional lattice now can move the lines of 

symmetries halfway and the points of representation could be halfway between the lines 

of symmetry. Both of them represent the one dimensional lattice and the corresponding 2 

d lattices are shown in c and d.  

Both c and d now represent a rectangular lattice, but this now is a primitive lattice 

because the total number of points add up to 1. So, the number of lattice points is 1 and 

therefore, we have a p lattice. We can always interview inter leave this a and b together 

and therefore, we can have alternate layers of this line of symmetry and that line of 

symmetry existing parallel to each other as I will just shown in the diagram e.  

Here we show that the a type is existing in these alternate lines and the other alternate 

lines are represented by this b type. And then this happens you see that this defines the 

unit cell with a equals b and gamma is 90 degrees which is a rectangular representation; 

however, we get a point at the centre. In fact, if you look at the most primitive cell that 

can be generated in this unit cell, this could be here. I will show by marking with the pen 

what I mean by this. 

So, if you see this, this, this and this: this refines a rhombus and in this case a dash and b 

dash are the two distances and gamma dash is the angle and this represents a primitive 

rhombus. The problem with the definition of a primitive rhombus a is that we do not 

have a value for gamma prime. Gamma prime is not any value. It has to take this value 

corresponding to the rhombus and what is the value associated with the rhombus? The 

value associated with the rhombus gamma can be calculated as a prime plus b prime 

divided by 2, etc, etc. And therefore, this is not a uniquely defined gamma prime. 

So, even though there is a possibility of a rhombus being defined here, the most 

convenient way of representing because all the symmetry elements associated with this 

will represent the presence of the rectangular lattice. So, the rectangular c lattice if 

centred will define now this unit cell. This will now involve the possibility of including 

this particular centre as well. So, we have therefore, here a and this is a this is b and this 



will now represent our unit cell with an atom with a lattice point of this centre. So, the 

total number of lattice point 1, 2, 3, 4 will define one and this will add additional lattice 

point. And therefore, the number of lattice points is two and therefore this becomes 

rectangular c lattice. 

So, the occurrence of the rectangular c lattice is because of the presence of an additional 

lattice points. Since we have two lattice points here this can be represented as a centred 

rectangular lattice and so, we have two types of plane lattices in a rectangular system. 

So, what is the implication of this? The implication of this is that effectively there are 

only four plane lattices, but then among the four plane lattices which you can call which 

we can could have called as two dimensional crystal systems.  

There is an additional lattice that is possible which is the so called c centred rectangular 

lattice. So, it now makes it possible to have therefore, 5 lattices. The fourth one is a 

equals b, here it is a and this is b and here a equals b because it is a square lattice in 

square the gamma is the angle here which is 90 degrees. And therefore, we get a 

definition of a square lattice which is something like this. 

Now, what is very interesting is to see how these fellows all developing. How the 

symmetry elements develop in a situation like this? If you look at this particular point 

this represents now because it is a square lattice it represents a fourfold symmetry. So, as 

a presents of the fourfold symmetry of here is repeated at unit cell lines. Notice, that in 

the case of the oblique lattice and also in the case of the rectangular lattice the same 

symmetry element repeated.  

Here, the fourfold symmetry now is not repeated because of the fact that these two now 

which are diagonals they intersect at the centre and there we get the definition of the 

presence of a fourfold symmetry which implies that we get additional two fold 

symmetries at these half points. Now, why is that it is because of the fact that if we take 

now assume that this is also fourfold symmetry, then this fourfold this fourfold together 

will not generate the central fourfold. 

If we want to generate the central fourfold, these have to be only two fold. Think about 

it, if we have to generate the central fourfold and also they are the fourfold symmetries at 

this are ledgers, this has to be two fold it cannot be any other value. If this is also 

fourfold, then we will not be able to repeat the four fold here. The redundancy comes 



from the fact that these diagonals will now represent the central point and these 

diagonals now automatically carry the two fold information and since these diagonals 

now carry the two fold information.  

This central now becomes the four fold symmetry, and as a consequence these directions 

will have now at the midpoint two fold symmetries. The same argument goes for the 

hexagonal p lattice where a is equal to b and gamma is 120 degrees and you see that the 

sic fold symmetry goes up in the edges and three fold symmetry is develop in these 

positions where we have shown and the central between the six and the six is always a 

twofold. 

So, this now of course, will eventually as you can anticipate will come as an assignment 

and you will have to work it out why this now has additional symmetry elements are 

different points like 1/3 and 2/3. Why the 1/3 and the 2/3 develops could be in the form 

of an assignment and this therefore, tells us that there are 5 plane lattices what we have 

learnt in this particular set of discussion is that there are 5 plane lattices, the oblique p 

lattice the rectangular p lattice, c lattice. So, we have an additional lattice with a centring 

which is associated with the rectangular lattice. We also have this square lattice and the 

hexagonal lattice.  

Remember, the rotation axis that can be associated with this are the two fold axis of here, 

two fold axis of their, four fold axis here and the six fold axis there. You also see that the 

presence of the three fold axis is automatically invoked in the hexagonal p lattice. So, 

there is no trigonal p lattice, the trigonal p lattice plane because it is already there. 

Suppose, you consider this as the origin then you can define three fold symmetry 

primitive lattice associated with the plane lattice. So, it is redundant. So, the six fold is 

the one which now dominates in this particular occupation.  

Therefore, there are only 5 plane lattices. So, even though there are we talked about 

seven crystal systems, here there are only five, four crystal systems and 5 lattices. So, in 

among the plane lattices, there are four crystal systems and in two dimensions and 5 

lattices. Now, we will see now what happens to the seven plane lattices, seven crystal 

systems and how many lattices we can generate with the same logic. 
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Before we go further we will examine in detail the definitions of the 5 plane lattices. This 

is something which is very important and crucial you see that indicates of an oblique 

lattice, the lattice type is p, the point group associated with the lattices 2. This is the 

maximum point group symmetry that can be associated with the lattice. But, when you 

come to the case of a crystal it depends upon what kind of an object is sitting inside this 

oblique axis. If there is a material which is now containing an object let say molecules 

that molecule has no two fold symmetry, it can still go into an oblique p lattice with a 

value of 1. 

So, the possible crystal point groups are 1 and 2, both 1 and 2 are possible in an oblique 

p situation where a is not equal to b and gamma is a general value other then 90 degrees. 

Having understood that we have the remaining p and c, we point group symmetry the 

maximum symmetry is 2 mm and then depending upon the type of object we are going to 

put in the crystal it could be 1m or 2mm. So, in logic appears to the square symmetry as 

well as the hexagonal symmetry, you see that in the case of the square lattice we get a 4 

and a 4mm, 4 mm is a possibility because we remember you remember that we have the 

Elures theorem and one once you have the proper, improper, improper that combination 

is allowed and therefore, we will have 4 mm. 

So, in general the point group symmetry of this lattice a is a proper, improper, improper 

axis combination in the value is a equal b gamma 90 degrees and when the value of 



gamma becomes 120 degrees you have the hexagonal symmetry. The hexagonal 

symmetry as you see can also have the threefold symmetry as we saw from the previous 

diagram of here it is also got the presents of the threefold symmetry; one third removed 

from the six fold symmetry, two third removed from the six fold symmetry, we have the 

presents of the three fold symmetries and this surroundings of this suppose, we have we 

call this as 0 0 0 at this particular origin there is a six fold symmetry, then the three fold 

symmetry is removed by one third. We can always move the origin to the three fold 

symmetry position.  

Then, we will invoke a six fold symmetry because of the presence of the two fold at the 

centre of these unit cell and therefore, we have these both the possibilities, it is coming 

up here the presence of six fold as well as the three fold. So, we can therefore, have 

objects which belong to the hexagonal symmetry, we can have objects belong into the 

trigonal symmetry, both going into a hexagonal small p. The small p and the small p the 

tell us that these belong to now two dimensional lattices; p represents a total lattice point 

of 1; c represents a total lattice point of 2. So, the number of lattice points in rectangular 

c is 2. The point symmetry is different from the number of lattice points in the in the 

lattice. So, the lattice now decides how many combinations of symmetries it can have 

because of the presence of either p or a c.  

In addition, we have his presence of symmetry elements and therefore, the objects now 

which find themselves inside these unit cells will have to look at both the point group 

symmetry as well as the lattice symmetry. So, the presents of the lattices symmetry in 

conjunction with a point groups symmetry and of course, the nature of the material 

which goes into this lattice; all these combinations will decide what kind of a symmetry 

one has to take in this particular case. 
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Extending the same logic of finding these symmetry elements and we saw that there are 

5 plane lattices. Since there are seven crystal systems, the seven crystal systems now will 

generate 14 lattices just like the 4 crystal systems in plane lattices generated 5 lattices, 

here the 7 crystal systems will generate 14 of them and these are referred to as the 

Bravais lattice this after the name of the person who discovered this. And this there for 

now represents the three third dimensions, the three dimensions and then we see here the 

cubic system in the case of the cubic system we therefore, have these points these are the 

lattice points please note that.  

These are lattice points are not atoms is always a confusion. So, we should remember 

that we have not brought in any realistic atom or molecules in the in our discussion so 

far. So, the points which are appearing here are the lattice points. So, the lattice points 

therefore, now represent the presence of a primitive lattice because here now which is 

three dimensions. So, each point will now represent one eight. So, the total number of 

this will be 1, 2, 3, 4, 5, 6, 7, 8 multiplied by one eight. So, that will make it 1. So, the 

primitive lattice always has one lattice point we can have the centre of the cube centre of 

the cube located in such a way that we will have what is known as a I-centred the body 

centred lattice.  

So, the cube is appear which represents one lattice point, this 1 represents the second 

lattice point. So, the number of lattice points saying a body centred cubic system is 2. If 



we can have also the each and every face centred, we will have four possible positions in 

which we can have the occupancies defined and therefore, we have the lattice points at 

the corners during one lattice point, in addition the faces give half lattice point. So, since 

there are three faces; half, half, half will add up to 3. So, 3 plus 1 therefore, there are four 

lattice points associated with the f lattice. Now, other possibilities exist in case of a cubic 

system which is the highest symmetry system. 
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In fact, I should have shown you the other way around, this 14 Bravais lattices; I 

purposely so the cubic one to show the complexity of the situation. Now, we will look at 

it in a simple way. The simple ways is that we have a primitive lattice which is 

represented by P , we can have the C side centres lattice which is the case with a 

monoclinic system. Because, the monoclinic system here now can have since the angle is 

90 degrees, the alpha and gamma are 90 degrees because of that fact we will have this as 

a possible C centred primitive lattice. 

So, since it is a central primitive lattice, it could be alone say C or A or B. But in this 

particular example, we have a C centred lattice; that means, there are two lattice points 

associated with the monoclinic symmetry. So, triclinic symmetry always has only one 

lattice point, monoclinic symmetry depending upon the case whether it is primitive or 

centred will have one and two; hexagonal system always has only one lattice point, a 

trigonal system always has only one lattice point. 



The most common one is the orthorhombic system where we have four possibilities; one 

is the lattice centring of course,  in this particular case a, b and c are not equal to each 

other. So, when we have a C centred lattice, we will not have the A and B centred and 

therefore, we can have a single face centred lattice which is represented as C. We can 

have also face centred as well which is referred to as F. We have the body centred lattice 

which is I in the orthorhombic primitive is also possible. So, if we count the total number 

of all these which now we will account to 14 lattices. So, we have seven crystal systems 

classified into 14 Bravais lattice. 
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I how got a another illustration which is much more simple and straightforward and this 

is drawn in projection. So, I have drawn the 14 Bravais lattices in projection and this 

draw drawing will clearly tell us how we can arrive at the 14 Bravais lattices in to you 

know we always want two dimensional representations. So, here you see that in case of 

the triclinic system, we have only a primitive lattice. In case of the monoclinic system, 

we have the primitive lattice. Now, why did I show like this because I am now showing 

the angle beta this is a c diagram. In fact, this is to show that the c centring can be done 

in this particular projection. 

So, this is P, the primitive lattice. This is the in this case it is a here and c there and this 

angle is beta in this case, this is c here and the a there and that angle is beta. The c 

direction is centred with respect to the lattice centring. Therefore, we have two plane 



lattices associated with monoclinic P and C and therefore, we have P and C lattices 

coming in three dimensions as well. So, triclinic as one one Bravais lattice, monoclinic 

as two Bravais lattices, orthorhombic will have four Bravais lattices represented in two 

dimensions here, tetragonal has two, trigonal has three, tetragonal has three sorry, 

orthorhombic the tetragonal has two cubic has three, hexagonal has one.  

And this is a very special case as I mentioned when a equals b equals c, alpha beta 

gamma are same value then we have what is known a trigonal system. This is in, this 

diagram is in conjunction with the diagram we saw just a few minutes ago in the respect 

to this one, you see that there is a one third and the two third, three fold rotation and that 

is what is depicted here in three dimensions as well. So, there is a one third and a two 

third, three fold rotation that is present in a rhombohedral system. 

So, there is a threefold axis which goes along the diagonal. So, if you take a 

rhombohedral system and put it along the diagonal and rotate that one, in such a way that 

we can rotate it in such a way that the angle becomes 90 degrees we will have a cubic 

system a equals b equals c, alpha beta gamma are 90 degrees. So, this therefore, now 

defines the 14 Bravais lattices. So, we have 32 point groups, seven crystal systems and 

14 Bravais lattices. So obviously, the next step is very clear.  

We have to take these symmetries into account we have to take the translational 

periodicity into account, we have to take the crystal system into account, we have to take 

the 14 Bravais lattices into account and then distribute the 32 point groups among all 

these crystal systems. When we do that, the prime groups now will alien with respect to 

these 14 Bravais lattice and generate what is known as the 3 dimensional space groups. 

That is because now in space, these symmetries get redistributed how in space the 

symmetry is get redistributed we will see as we go along. 
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And now, before we go further, you remember that we decided to see everything in two 

dimensions, but it is not always possible to see everything in two dimensions. Because 

we saw the meiosis diagram, we understood the concept of periodicity from meiosis 

diagram and we have those objects repeating themselves generating the periodicity, 

generating the symmetry elements and so on. And, then we have to look into the aspect 

that how one can really look into three dimensions and this is in real situations. In real 

situations, we will have a crystal the crystal have different kinds of faces. So, these 

different kinds of faces in the crystal have to now be inscribed into a highly symmetric 

spherical system. So, sphere is the most symmetric object. 

So, we take this sphere which is the most symmetric object. Take the crystal and insert in 

in it inside a sphere in other wards you describe a sphere passing through these points 

which I will stated here and you will get this sphere. Now, we take the centre of the 

crystal and draw directions have to various planes about which the crystallize has this is 

a very beautiful ground crystal, not always the crystals are so good but in this example, 

you see that we are drawn from the centre here perpendicular radial direction.  

So, the radial symmetry of the crystal you gets have represented here. Why do we 

represent the radial symmetry because the radial symmetry is the one which is most 

common with respect to spherical objects. For example, if you put a centre here all the 



symmetry elements now associated with this particular sphere can be along the radial 

directions. 

So, if the crystal has a certain symmetry, the external morphology has a certain 

symmetry that symmetry can be fitted inside the stereographic projection. I will just 

diagnostic little bit at this particular point because we have to see why stereographic 

projection is very crucial in looking at crystals. And this is in fact, the way in which 

crystallographer practiced and identified all the symmetry elements associated with the 

crystals. Nobody did x-ray diffraction in those days because extra diffraction was 

discovered much much later.  

All these concepts of point group symmetries and the space groups and so on were kept 

and derived way back in the 18 century the in 18 century 1735 to be exact. In that 

particular year, it was already shown that there are 32 point groups and because of the 

fact that we have now crystalline objects which will not displace these point group 

symmetries in the lattices, the combination of the lattices and the point group symmetries 

will give rise to 230 space groups. 

So, all these were worked out much much before. So, we have to find out how they 

would our did out, not that we are going to do this way, we are going to actually use x-

ray diffraction techniques which is a experimentally reliable and develops technique in 

recent years. In fact, x ray is well discovered only in 1900 by Rontgen. So, only after that 

time, but before that all the space groups and all the presence of point groups space 

groups etcetera you are already established.  

So, how was it done? It was done by looking at crystals and people got all the very large 

crystals or size crystals so that they can hold it in their hand and then examine the 

perpendicular faces the perpendiculars to the faces, make an impression of that on to 

sphere and on that sphere, we can mark the intersection point. So, if this is the point find 

which is they appear we mark the intersection point by a open circle. 

Now, I will define what is this open circle and close circle in a minute. Before that, as I 

mentioned we will digress a little bit. We have a similar situation in case of earth we 

have a three dimensional object; earth is a three dimensional sphere and when you want 

to study the geography associated with the earth, we do a different kind of a projection 

that is not a stereographic projection. We do what is known as the Mercator projection. 



In that projection, what we do if we take they were earth the surface of the earth hold on 

to it is diameter and then press the earth. It is like taking an orange and press it of course, 

though did because it will push and spread and your dress, but essentially you take this 

orange diameter and press it like this and when you press it like this, it flatulence out and 

flat and out is your map. 

So, then you take out the reasons of what you would like to inspect in this flat and out 

map. If this is on this side, we will exam in those ones we both northern hemisphere and 

southern hemisphere units will be represented and also the northern hemisphere or 

southern hemisphere units will be represented on the other side. Essentially, we have to 

then open it and spread it, this is the diagram we will see in all atlases. So, you press it, 

open it and spread it around and therefore, you see the Americas on the left side and the 

rest of the world on this side, Americas are always separate. So, that is what we will see 

and now we want to determine in the distance between Mumbai and Bangalore as we 

discussed earlier in with respect to this diagram. 

So, this diagram is telling as is it clear this diagram. So, this diagram is telling as that the 

story of Atlas. This is a Greek mythology the Atlas is carrying his the earth and you 

shoulder and these two angels want to measure just like as the distance between 

Bangalore and Mumbai. So, there holding this divider and then this angel, the third one 

is helping them out why shining light on this so that we get a projected image of the 

surface of the earth and this is on the ground and therefore, it is two dimensional and 

they now measure this distance and have a scale factor which will work out to the 

corresponding distance between Bangalore and Mumbai. 

Now, there is a flow in this particular type of projection because it depends upon on what 

point on the surface of the earth we have done this projection. So, that way this 

projection is not a very convenient way of looking at actual systems. In other words, 

suppose instead of taking this equator and pressing it suppose I take let us say in fact, 

time when I visited New Zealand, this is what I we saw you take New Zealand as this 

part and compress the rest of the earth and top of New Zealand. 

New Zealand as you all know is the size of our state Karnataka but when you do this 

kind of an operations New Zealand will appear very very huge. With respect to New 

Zealand, India will appear very very small it may be a little bit of a short length. And of 



course, U K will appear as a point that is not true, but this is what happens in this kind of 

projections. So, we need to find out a proper way of generating the projection diagram 

and that is where the stereographic projection comes in handy. So, what we therefore do 

is, we draw all these radial lines with respect to the centre passing through the plane of 

various plane so that the crystal is made up of various plane. This is let us say diamond, 

many of you where diamond many of the students wear diamonds and the diamonds has 

got very nice lustrous planes. 

So, from the centre you draw this normals, the normal to the plane is the one which is 

now collected on the surface of the sphere. So, we are not now compressing or pressing 

this sphere which is remaining as such and then we do this projection. So, when we do 

this particular projection, what happens is that we will have points with respect to the 

northern part of this crystal, we also have points corresponding to the southern part of the 

crystal. 

So, if now we see the northern part of crystal as we shown here, if there is a point P on 

northern hemisphere, we take the south pole and connect it to the north to the point p and 

represent this little p in the equatorial plane as a point as a close the circle a little close 

circle as you see here. This is the point p which is now the representation of the 

projection of this particular point on to the south pole. A similar construction is done 

with respect to the north pole.  

And I think we will stop here. 


