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Lecture — 36
Bragg’s Law in Reciprocal Space 1

We have been looking at the Bragg condition. A few issues with Bragg conditions still
left undiscussed. I left this diagram for you to analyse, but I thought that maybe I should

explain it a bit more.
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Other than that this new diagram I have put in. This new diagram will tell you that if you
consider a this that is say is the plane from which the diffraction or the reflection of the
incoming radiation is giving us the diffracted beam. Now, essentially the diffraction from
all practical points of view under the Braggs law we consider it as a reflection; that
means, the angle of incidence and the angle of diffraction they are one and the same and
because of the fact that this distance AB in fact, AB will represent now the wave front
associated with the incoming, that is the incident radiation and CD will represent the

wave front which is going out after this scattering.

So, that would mean that this angle is 90° and that angle is 90°. So, which essentially
tells us that if you take any point on the plane take any plane and take any point on the

plane the diffraction condition is still the same; that means, if you see this angle ACB



and angle CAD these two angles are one and the same which happens to be equal to
and because these two angles are equal to € by construction it means that all this points
any point in this plane will scatter with the same phase. So, if you assume that there are
different kinds of atoms in different parts of a given phase all those atoms will scatter in

phase.

Suppose, you consider this as the plane passing through the origin and that along
different directions different distances different atoms lie on the on that particular plane,
as far as the phase associated with this plane is concerned it is always O because it is
passing through the origin. And if atom sit on this particular plane the phase that is
scattered by these atoms will also be 0. So, this is a very important point that this scatter

with the same phase if you consider any point on the plane.

So, which means to say that in a given plane any plane for that matter it need not pass
through the origin any plane there may be several atoms sitting. This is again taking you
back to the bread analogy where we take a slice out, there may be several pieces of
different things which we have added in the piece of bread and therefore, different
electron different electron densities associated with different atoms may coincide with
that particular plane. All these now will scatter in a with a single phase and this is a very
important phenomena because then we need not have to worry about the what are the

contents of that plane as for as phase determination is concerned.

Suppose, in this particular plane there is a carbon there is a nitrogen, there is a bromine,
there is a iodine and things like that which parts of it %f course and all these electron
density therefore, will all scatter with the same phase  associated with the plane. So,
this factor will help us in actually determining the structural details in a later point. So,
what we have to take home the take home lesson from this particular diagram is that
these scattering is associated with the same phase and that particular phase angle is now

with respect to the plane.

So, suppose these atoms are not in this plane and somewhere else the contribution of this
plane to the scattering will still have the same phase. So, the phase angle is therefore, a
property associated with the plane and the contents of the plane now whatever be the
contents the phase angle will still be the same and this is the phenomena which in fact,

will come in handy when we toss determine the structure later date.



Now, regarding this diagram which we already discussed a bit in a last class we see that
the wavefront again here in this case is a is shown as AP. So, this difference this defines
the incoming unit vector Sy and this the vector S which is the scattering vector and the

what is represented here are the two different plane separated by a distance dyy.

So, whatever are the atoms on this plane they will all scatter in phase whatever are the
atoms in this plane they will scatter with that particular phase and if the first we consider
the first plane which is out of the; out of the origin suppose A is the origin position then
the first plane out of the origin will scatter with a path difference of 4 and therefore, a
phase difference of 7. So, that defines in fact, the Braggs law that is because of the fact

that this little geometry construction will tell us.

So, if you look at AP and AQ this AP and AQ are plane wave fronts the path difference
is that if you consider this particular wave on the second wave which is going up here,
the path difference will be additional PB+BQ. So, the additional path the second wave is
travelling is PB+BQ. Now, the value of PB+BQ can be calculated as based on this
diagram because this is the angle of incidence this is the angle of diffraction and

therefore, this is the angle of incidence and this is the angle of diffraction.

These two triangles are similar triangles. So, APB and ABQ are similar triangles in as a
property of the similar triangle is that the external angle will be equal to the internal
angle. So, these two angles will also be 6 and therefore, this will be one side one d sinf
the other side another d sinf. So, it accounts for 2d sinf. So, PB is d sin 6, BQ is also d
sin. So, PB+BQ is 2d sin®.

So, in order for the reef reinforcement occur in order this two waves now overlap with
each other they should be a whole number; in other words if the diffraction has to take
place these two have to be a whole number of n number of wavelength. So, the first one
will be 1%, second one plane will be 2, third plane will be 3A and so on. So, therefore,
they satisfy this equation 2d sinf is equal to nA. So, you get the Braggs equation, 2d sinf

is equal to ni that is the condition which is derived from this particular diagram.

So, therefore, these two diagrams tell us two major things one is that when there are
points any point on this given plane will always scatter in the same phase, irrespective of

where the point is on that particular plane and when we consider parallel planes like this



with are separated, but a distance of d, we get the condition that 2d sinf is ni and that is

the way in which the Braggs law appears.
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To see what is the value what is the role of this n which is referred to as the order of the
reflection we have already discussed this, but we will again look at it from the point of

view of how the angle changes with respect to the variation in the values of h, k and 1.

Suppose, this hkl is 210 the value of 210 if you consider the value of 2 times d 459 where
you have now taken 2h, 2k and of course, you can call it 21, but it 0. 3 times d ¢3¢ that is
the 3 times. So, we therefore, see that the value of the d ,;¢; this is the value of d 519 the
spacing between these two planes is twice 2 times that of the plane distance between
these two and 3 times that of the distance between these two and therefore, d ;¢ is equal

to 2 times d 420 equals 3 times d ¢30.

So, as a consequence what will happen to the sinf value? The sinf value which is again
following this formula 2d sin® = n A, we see that sin 0,1 will be half that of sin 645 as is
illustrated here; this is the 6 angle, this is the 6 angle the angle of the of the between the
incident and the diffracted. So, this is the incident angle 0; this is the diffracted angle 6.

So, the angle between these two therefore, will be 2 6.

So, this I and D now come at an certain angle sin 6,;¢. This now becomes one half of that

angle and this now becomes one third of that angle and if you consider the fourth order



reflection it will be one fourth of that angle. So, the order of the reflection therefore, tells
us what should be the angle that is at which the diffraction occurs. So, at which the
incident ray comes and falls on the plane and these are of course, all parallel set of

planes.

So, from the X-ray diffraction point of view and when we do an X-ray measurement
even though this is a general equation 2d sinf is n A your n value can be different from
each other when the diffraction spots come. So, when you have the reciprocal lattice
points these reciprocal lattice points can have different values of n. So, therefore, we get
2d sinf equals A for the first case, 2d sin equals 2 times A, 2d sin 3 times A and so on.
So, as a result the position of individual reciprocal lattice points will already put a

formula which is 2d sin0 equals A.

So, the order of the reflections will appear in a diffraction geometry in such a way that
each of them will represent a separate position for the reciprocal lattice point because
this now will occur with this point, this will that point that will occur at that point and
that depends upon the angle between the incident and the diffracted rays which is given
in terms of this values. So, therefore, in general 2d sinf® is n A, but for all practical
purposes in a diffraction experiment we take it n equals 1. So, we therefore, get 2d sind
equals A which is what we will be using in the entire analysis associated with the

reciprocal lattice.
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Now, we discussed a little bit of this diagram yesterday, but we will re-do that in the
sense that we have to now consider the relationship between the direct space and the
crystal structure and the reciprocal space on the diffraction pattern. Now, this is a factor
which is of crucial importance because what we will observe from a diffraction

experiment are these.

What we will observe from a diffraction experiment are these reciprocal lattice points,
so, when you put crystal in the X ray beam and diffraction occurs you will get spots
depending upon the quality of the single crystal and this particular spots will tell us the

points of the reciprocal space lattice. So, this therefore, defines the reciprocal lattice.

Now, what is the relationship between the direct lattice which is up here which is our
unit cell defined suppose you take this as a 2-dimensional crystal you see that this is
represented by the a value and this is represented by the b value therefore, this red square
here will be the unit cell. Now, this unit cell repeats itself because it is a crystal in all
both the directions. So, this therefore, now defines the crystal space. So, this is the lattice

representing our crystal.

So, the angle between a and b which is y will also decide the orientation of these a and b
with respect to each other. So, in other wise this angle which is here could be y. So, that
is because of the fact that this two are identical I can show the y here, I can show v here, I

can show vy here, I can also show it here. So, this you know already.

So, we have therefore, a direct space and the corresponding crystal structures. So, the
atoms are all lying here in this part of the diagram. So, there here wherever depending
upon where the atom wants to be and where the molecular structure develops or the ionic
structure develops and so on. The atoms are connected to each other as we discussed
yesterday, these scattering is done basically by the atoms; that means, the electrons
associated with the atoms. So, X-rays when they fall on this crystal they will be
diffracting based on where the electron density is found. So, the larger is the electron

density the more intense will be the diffracted spot.

But, the observations which we are going to make is with respect to the individual planes
which are defined in the direct space. Now, what are these individuals space planes we
define in the direct space? We will define for example, a plane which is not going

through the origin and therefore, as we discussed all the atoms which may lie on this will



scatter in phasg) in the phase we the scatter with the same phase a 1 with 0 and that

particular case  will be 0 this the phase angle will be 0.

The plane which is coming out from here we have we can consider several planes which
come out from here, but what we have done is a set of parallel planes. So, we have drawn
here the plane which is now represented by a line because we are shown it in 2-
dimensions. So, plane is perpendicular to us. So, if you now consider this particular
plane a in two-dimensions it can be represented as 1,2. Now, why 1,2 because we see

that this blue line intersects these red unit cell at 1 unit along a and half unit along b.

So, we said already that the indexing is done in such a way that if there is a cut of half it
will be actually 2 in terms of the identification. So, therefore, d;; go back to the bread
analogy where we took the central slice and said it is at half position along a, but that
would mean that it is a 200 reflection if we are considering the reflections along the a
direction. So, the same analogy brings up here the value which is the distance the black
line here indicates the distance here indicates the where position of d;; the this the length
of d; that is the value of the d value of 12; 12 being the plane which we are representing

here.

So, if this is the 12 plane the next parallel plane will be what? The next parallel plane
will be 2 and 1. So, this is 2 and 1, this is sorry this is 1 and 2 and this will be; this will
be 2 and 1 and this will be 3 and find out. Now, you have gone into the next unit cell up
here if you consider the intersection, but it is a parallel plane to this one. So, all parallel
lines with respect to 12; so, 12, 1 along the a direction and 2 along the b direction that
becomes half of that. So, this will therefore, be 13 right 23, 33 sorry. See, 1,2 is up here
the parallel plane to that will be what? This will be 2,1, the next parallel plane will be 3

something.

Now, if we consider this as 1, this will be now 3/2 one and half and therefore, this
intersection point will be what? So, if this is 3 that will be what? Find out and then you
see that these are now a set of parallel planes ok. These set of parallel planes let us go
further these set of parallel planes are represented by this vector in this case the plane 1 2

is represented by d;», the distance of 1 2.

Now, the corresponding reciprocal lattice vectors will occur with respect to a, 1/a this is

the vector direction 1/a vector direction represents a* and 1/b vector direction represents



b* this is now the value y and therefore, this will be the value y* to define the 01 and the
10. So, the reciprocal lattice points are now represented as 10 and 01 with respect to the
reciprocal lattice and this angle will become y*; y* is 180-y where y is this angle.
Suppose this is angle is exactly 90° this will also will be 90°. So, a will be 1/a, b will be

1/b. Here also as far as vector directions are concerned it will be 1/a, 1/b.

So, these therefore, now represents the a* b* axis and this is 10 in this direction and 01
this direction. So, if we now take all the reciprocal lattice points along the b axis b* axis
we will have 01, 02, 03 and so on and the corresponding values in the a direction are 10,
20, 30, 40. We will therefore, get the intersection of 1 and 1 as 11 then 1 and 2 as 21 and
so on. So, if we are now looking at a plane d;, the corresponding reciprocal lattice vector
will be now we have to look for 12 that is one intersection along a 1 along a and 2 along

b.

Now, this what this represent is the reciprocal point that is d*;,. If this is the d;, we
represent this as d*;;. So, this therefore, now defines the diffraction pattern, it also
defines the reciprocal space. So, if you sit down and study this diagram a little carefully
you will definitely see that the one to one relationship between the direct space and the
reciprocal space. And that one to one relationship will therefore, tell us that if this is a
lattice if this is the red one is a lattice, then the collection of all this blue dots should also
be a lattice and therefore, this we call as the direct lattice this now becomes the so called

reciprocal lattice.

So, in the reciprocal lattice we have two vectors a* and b* with an angle of y* defining
this particular nature of this lattice. So, the distribution of the diffraction spots therefore,
should come at these blue points. So, keeping this in mind we will see how we can use

this idea of reciprocal as because we always see the reciprocal lattice in an experiment.

So, when we do the experiment we put an X-ray we send an X-ray beam onto the crystal
a collimated X-ray beam onto the crystal. The crystal now diffracts, so, it will follow the
Bragg’s law and therefore, we have an incident ray and a diffracted ray according to the
Bragg’s law satisfaction 2d sin® = n A and therefore, we will get to positions which are

now the reciprocal lattice positions and therefore, we will get spots.

Now, these parts which we will get in a single crystal are therefore, each and every spot

now is a representation of a plane in the direct space. So, every plane in the direct space



gets represented by a point in the reciprocal space and this a very big advantage because
we do not have to look at the plane we look at only the reciprocal lattice point. We also
know another factor that every plane therefore, if any atoms are lie on that particular
plane they will all correspond to the same phase and therefore, when we get this
reciprocal lattice point let us say 21 here; 21 will contain information of all the atoms in
that particular plane in the direct lattice. And therefore, 21 is something which is one
once we get the coordinates of 21 it is important to see what is the intensity that is

associated with 21.

So, before we go to the analysis of the intensity we have to do one other way in which
we can look at the Braggs law. Whatever Braggs law we derived earlier is in the direct
space, we took the parallel planes, we did the construction then we found the phase angle
and so on and showed it is 2d sinf equals to A or nk where n is the order of the reflection
on the other hand when we do a diffraction experiment what we see is the reciprocal
lattice image; that means, we see the spots. So, it is always good to see whether we can

actually think of deriving the Braggs law in that space itself.

So, in other words, can we have a Braggs law in reciprocal space can we derive Braggs
law in reciprocal space? This was thought process which was put to develop what is
known as the Ewald construction. So, it was developed by a person by name Ewald. So,
it is known as the Ewald construction. You can directly visualize the diffraction
conditions by means of which reciprocal lattice points come and that is how it is done

which is shown in the next view graph.
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Bragg’s law in reciprocal space

Here you see something which we have to do a construction. What you see are the points
here which are the reciprocal lattice points. So, I have drawn the reciprocal lattice. So,
the reciprocal lattice is similar to the reciprocal lattice shown here. So, all these points
which come we know now how they are coming and knowing that how they are coming

we have taken these points and we have transferred it on to the plane.

Now, therefore, this is now a planar representation of the reciprocal lattice points. Then
what we do is we do what is known as a Ewald construction. So, each plane is a
reciprocal lattice point as we saw just now. So, what we do is we just take a circle, we
draw a circle of radius 1/A; A is the wavelength. Remember that the reciprocal lattice is

represented in inverse of length the dimensions of inverse of length.

So, we therefore, take a circle and draw the circle of radius 1/A. That particular circle we
can draw with some centre here and you see that this is the circle which we have drawn.
This is a circle drawn with the radius 1/A. So, if you consider the centre as here this to

this distance or that the distance is 1/\.

Now, we define on this particular circle this circle can be anywhere ok, it can be
anywhere in 3-dimensional in the 2-dimensional space we have drawn here it is 3-
dimensional because we are now going to eventually change the circle in a sphere, but at
this moment this is a 2-dimensional diagram and so we have a circle. Now, this circle

can be drawn anywhere, but it should have a diameter of 2/A or a radius of 1/A. So, this



radius of 1/A is with respect to some origin. So, we take this the one of the reciprocal
lattice points to be an origin. So, if you take this as a origin of the reciprocal lattice point
(0, 0) now this is the circle with a 1/A radius which is drawn in such a way that the circle

passes through our (0, 0).

So, remember the circle is passing through our (0, 0) on the circumference. So, this is the
circumference of our 1/A sphere. So, there is a centre up here. Now, let us say we send an
X-ray beam from the top. The X-ray beam from the top now comes and falls on this
particular origin which is a reciprocal lattice point so, it is scatters. Now what it
therefore, tells us is that any point which intersects with the circumference of the circle
because we set the circle is arbitrary it can be put anywhere. So, any point which
intersects with the surface of this particular circle will give us therefore, the diffraction
condition that satisfied. So, can we use this method to find out what is the diffraction

condition that has to be satisfied.

So, therefore, we see here in this particular example we have taken the reciprocal lattice
points and we see that this is the vector b,, the reciprocal lattice vector and this is the
vector b, which is the second vector. So, b; and b, now represent the reciprocal lattice
vectors, reciprocal lattice dimensions. So, b; and b, are the reciprocal lattice cell

dimensions or reciprocal cell dimensions.

So, having seen b;, b, being representing this is let us say one direction this is the other
direction. You see we go up in this direction drawing these points on, these are all the
points which are lying with their origin here and these are all the points which lie with
the origin with respect to the b,. So, we have an we have a b; here and a b, that is

defined, so, this is the origin.

Now, you see in the diagram which I have drawn it so, happens that the point which is
now 2 along 1 along the; 1 along the one direction that is this point this is the if you
consider b; the and this is the point 1 along the b direction. So, we see that this
coordinate therefore, which lies on this is 2 this one in this case of b; and b, is 1 and 2.

So, there are 2, this is a second position; that means, this vector H is represented by (1,

2).

So, since this vector is this is the crystallographic directions in some in some sense, so, it

is (1, 2). So, the diffracted beam is now shown as S in that direction. So, therefore, what



happens is this is the incident beam, this is the diffracted, beam you remember the
diagram with we draw the diagram will be this will be the angle 26 between the incident
beam and the diffracted beam. Now, if you take the bisector of that we already know that
should be the direction of what we call as the scattering vector. So, this is written as the

trace of plane normal to H. So, this will be the direction of this scattering vector.

So, we therefore, have a 0 here and a 0 there and this is the centre of the circle and we
have the incident beam and the diffracted beam. Now, what happens is that as you see
here the there are several reciprocal lattice points which on this grid, but none of them
are intersecting except the one which you are taken as an example the reason is obvious
because we are keeping the reciprocal lattice fixed; that means, we are keeping the

crystal in one position and then sending in the X-ray beam.

So, if we keep crystal in one position and then send an X-ray beam very often there not
there may be no diffraction coming no reflection are observed or we may observe a
reflection by chance like what we have seen here and we will see this particular
reflection we do not see any other reflection; that means, to say that whenever the
reciprocal lattice intersects with the Ewald sphere on the surface. Now, instead of the
circle I am going to call it a sphere because we are now going into 3-dimensions. So, we

call it as the Ewald sphere.

So, anywhere anytime an Ewald sphere intersects with a reciprocal lattice point the
surface of the Ewald sphere then can we get the diffraction condition satisfied and this
diffraction condition is satisfied if H lies on the surface and if H lies on the surface of
this sphere then the scattering angle we know it depends on the length of H the Laue
condition; the length of H, S-Sy/A

So, the length of H therefore, is equal to 2sin6/A in magnitude. We have shown this
magnitude of H is 2sinf/A, so, it is 2sinf/A. Now, what is 2sin6/A? It is 1/d . So,

therefore, you equate these two, you will get the Braggs law 2d sinf =A

So, therefore, the Ewald sphere has a radius of 1/Ah. So, what is the catch here? The catch
here is the following that we have kept the crystal in a single position sent in the X-ray
beam, by chance it so happens that in this diagram which we have shown purposely there
is a point which intersects with the surface of the Ewald circle or the Ewald sphere and

therefore, it satisfies the Bragg condition. See in order to satisfy the Bragg conditions we



have to have this equation satisfied that is because of the fact that the vector H which is
the reciprocal lattice vector should have a magnitude which is equal to 2sin6/A then and

only then we get diffraction.

So, we see here that in this entire diagram we have shown only one possibility of a
diffraction point. Then how do we get all these reciprocal lattice points to diffract? The
solution is very simple, you rotate the crystal. Now, as you rotate the crystal this
reciprocal lattice itself will start rotating. So, as the reciprocal lattice rotates different
points in the reciprocal lattice can come and intersect with the Ewald sphere here, the

surface of the Ewald sphere.

So, as and when any of these for example, here there is a nearest intersection it may
slightly turn around and then next point will be intersecting here this will intersect and
like that. So, all these points will start intersecting. Now, what is the limiting condition
for that? The limiting condition is that now this becomes the radius, 2/A becomes the
radius and therefore, this circle which we are drawn outside or the sphere which we can
draw outside in 3-dimensions which is referred to as the limiting sphere, so, this has a
radius of 2/h. And this 2/A is now the limitation. So, all those reciprocal lattice points
which lie within the 2/A, have a chance to intersect with the Ewald sphere which has a

radius of 1/A.

So, the radius of the limiting sphere is 2/A. So, the reciprocal lattice points which lie
within that particular sphere have a chance whenever when the rotation takes place the
360 rotation of the crystal will bring all these points which are shown within the limiting
sphere to intersect with the Ewald sphere and whenever there is an intersection with the

Ewald sphere you get diffraction. So, it may so happen that in as you rotate the crystal.

There may be positions of more than 3 or 4 reflections satisfying the Braggs condition
then you at that particular angle of rotation of the crystal you will get more than one
reflection. So, it is not necessary that one at a time should come, you can get any number
of reflections at a given angle theta in different directions see the directions are different
this point and let us say this point were to intersect. We will get one diffraction in this
direction another diffraction in that direction and so on, so, it goes in that particular

fashion.



So, what we therefore, do is to see that this set of points which will now present or which
are present in the limiting sphere will have a chance to intersect with the Ewald sphere
and this is a point which therefore, allows us to do look at Braggs line reciprocal space.
So, we now know what under what co conditions and under what circumstances a crystal
can give diffraction. So, we have a crystal, we get the diffraction spots and these
diffraction spots will follow this particular equation which is the Braggs equation. So, I
think at this level we have now just understood the Braggs law, both in the direct space

as well as in the reciprocal space.



