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So, we just saw that the 2 equations which are very crucial to our structure determination

or these the structure factor expression and the electron density expression.
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Now we will see what is the relation that comes in the geometry point of view because
the relation that comes from the electron density we now know because the more the
electron density the more is the scattering. Suppose you have a very big atom and a small
atom the contribution from the big atom is more to the scattering compared to that of a

small atom.

So, X rays therefore, now if one used whenever we use them; we will have the intensities
depending upon the strength of the electron density that is associated with the unit cell.
Now let us see what happens in terms of the geometries let us look at this figure; this
figure is essentially showing this that we have the incoming incident radiation. The unit
vector is associated with this is s) we now normalize it with respect to A; so, it becomes

independent of A. So, we can use any A remember that we are talking about atom sizes of

the order of 1 A.



So, the wavelength can be anywhere between 0.4 to 2.5 A; if we use that wavelength we
will be in a position to see the details associated with atoms and molecules and so on. So,
therefore, we prefer to use X rays in that range about 0.5 A to 2.5 A is the range of X
rays we like to use. It is recommended that since with the A is coming up as a

normalization factor; it is recommended that we use a single wavelength.

So, at this particular stage I can introduce the way in which we generate X rays; there is
no slide or a diagram for that because I thought it is probably not necessary. Instead I
will just give a narration and that narration should be sufficient for our understanding of
how we generate X rays. You have all seen an X ray tube I suppose and you have used;
in fact, you have gone to whenever you broke a hand or a leg which most of you do you

go to a doctor and the doctors puts you through the X rays.

So, X rays are generated in a vacuum tube and these X rays are generated in such a way
that they come up from what is known as thermionic emission. That is you take an
element a filament in fact, a tungsten filament and that tungsten filament is heated with a
certain small current. As the tungsten filament is heated that is just like the light source
we have in olden days we had those incandescent lamps which still some people use, but

now we have replaced everything by LEDs.

But this incandescent lamp are used to have a filament and when once you put on the
switch when the power goes in the power is actually heating the element. The heated
element now generates luminescence and that is how you get the light. So, the light
becomes now on and as a consequence the filament glows and filament glows because
we have heated the element. So, the same heating we do and now we have the there is an

vacuum tube which encloses the filament.

Now, what really happens is in this case of the filament heated there is a certain region
around that where we generate electrons. So, electrons get emitted there is of course, the
usual heat the joule heat will be there. So, that is why if you put the light for about half
an hour the incandescent light and go and touch it your hand will burn; the reason is we
have generated a lot of Joule heat. Apart from that we have also use the concept of

luminescence which occurred in the tungsten filament.

Now, the process is now essentially generating electrons. So, these generated electrons

now are put in a large electric field. So, we put what is known as a cathode and this



becomes now the anode. So, the cathode is now made up of an element ok, So, that
particular element maybe I will have to write some picture for that. So, instead what |
will do is I will explain and tell you now in very simple terms that the electrons now get
accelerated, when we apply a very large field and these field could be 30 to 40 kV that is

the X ray generator you will see.

So, in the case of a typical medical X ray it is about 60 to 80 kV of power which now
accelerates these electrons. There is also a certain current which is involved in it we want
the electrons to be generated faster rate than we increase the current. In a typical
laboratory experiment where we expose the crystals that current is in mA; on the other
hand in a medical X ray the current is in A. So, it is about 60 A; so 60 A and something

like 60 to 80 kV is what is applied in a medical X ray situation.

In a when we want to expose the crystals as you know it is very small; the size of the
crystal one uses it is about 0.3 mm?; it is a very small crystal and therefore, the power is
not very high it is not required. In fact, we can calculate the power. So, if you multiply
40 by 20; it is about 800 right; so this is 800 W. So, the power that is generated will be
800 W.

So, depending on 800 to 1200 W is the power which we use in the case of when we
expose the crystals to X rays. On the other hand in the medical X ray it will be now 60
times 80 or something; so that is 4800 W its a very you know almost half a kW.

So, the X rays now what happens is that these electrons now hit the cathode which is an
element. Now this element has a certain characteristic X ray maybe we will discuss that
in a later class, when we actually see the experimental setup; when we actually see how
we set up the experiment to measure the diffraction, how do we use the detector, how do

we generate X rays at that time we will consider that.

But at this moment these X rays are accelerated to the cathode; the cathode is a particular
element. Now this element has some what we call as characteristic behaviour depending
upon where the k shell electrons are there with respect to these element we get the
intensity going up in X rays. Otherwise generally we get X rays normal X ray which is
known as the white radiation, like any other radiation you get you get a white radiation;
along with that white radiation there is a characteristic radiation corresponding to the

elimination of the k, elimination of the & shell electrons.



When the £ shell electron goes out / shell electrons drop in and therefore, we generate the
X rays and those X rays in case of medical X rays are very strong. So, they pass through
our body there is no harm. But the X rays which we use in the laboratory is so low in the
power that we should not get ourselves exposed to X rays. Anyway let us say that we

have generated X rays now for our discussion; we will go to the experimental detail later.

So, we have the generated X rays; so this is the X rays which are generated with a certain
wavelength A. So, we all these discussion came up because since we using this A as the
normalization factor, it is better that we in most of these experiments we try to get the A
to be a single value. In earlier experiments which Laue and others did which we are

going to discuss now they used white radiation.

However, it is now recommended that we use what we call as the monochromatic X rays.
So, there is a single wave length X ray. So, the incoming incident beam is normalized
with respect to that. So, this is the way in which it comes and falls on these electron
density p(r)dr let us say it is up here. So, if the there was no electron density this would
pass through and therefore, this is now called the incident direction; s¢/ A is known in this

particular direction it goes out into the system.

In fact, depending upon the amount of electron densities present since the energy that is
associated with the incoming radiation is so large most of the radiation will go through
except a little bit which now we will go in the direction s/A because of the presence of the

electron density it depends upon how much of electron density is there.

So, the amount of electron density decides how much of scattering intensity should
come; so this goes in this particular direction. Now you see that if you calculate this
angle if you call these angle as 26 or now the vector R which is (s - sy)/ A is the bisector
of these two. So, there is so/A, s/A this is the bisector; the vector R therefore, is the
bisector of sy/A, s/k. You can calculate what should be the value of R; a little bit of
trigonometry you have to do yourself. So, I will leave the choice to you how to get to this

expression.

So, we get |R| = 2sin6 /L. So, we therefore, get the actual value of R depends upon now
the so called scattering angle; the more the scattering angle you see that the value of R it
depends upon the value of A. So, for a given A the value of the scattering vector depends

upon the value of 0; that means, the direction in which it goes the scattering direction in



which it goes, is not really indicative in this expression which only giving us the
|2sinf/A|. So, the direction in which it goes is following the sy/A, s/A because that is the
bisector of that.

So, depending upon different values of 20 this vector s/A can go anywhere between this
to that; this can go from 0 to nearly 180°. Now what how does s/A vary with respect so/A;
we can consider that detail by considering the possibility of having atoms put here which

we will discuss later.

So, at this moment |[R| = 2sinf/A; what you notice immediately is therefore, this quantity
R as we have been telling already is inversely proportional to length. And therefore this
scattering vectors represent the vectors in reciprocal space. So; obviously, we have to
now define a reciprocal space which we will do in an little while from now. So, the
essentially the idea is now to see that we can get the value of the magnitude of R; the
phase angle anyway has to be determined and therefore, we still have the phase

determination remaining, but we can get the magnitude of R.

(Refer Slide Time: 12:05)

Scattering from a point atom: independent of the scattering angle 26

8(r) =0 except when r=10

J 8(r)dr = ¢ Assembly of § functions atr, r, etc.
Delta function F(R) = E ¢ exp (2miRer;)
F(R) = J 5(r-r') exp (2miRer) dr represent a collection of point atoms
= cexp (2mR-r')

Delta function at r’ from the origin

Now, we will go into the realistic situation until now we generally discuss scattering we
generally discuss scattering with respect to some electron density which is lying in some
space p(r)dr ; now we will say that the electron density is associated with an atom. And

more so we will make this atom a point atom; that means, suppose you consider a carbon



atom, there are 6 electrons associated with the carbon and of course, there is nucleus core

and valence electrons and so on.

Now, the whole thing we will condensate as though it has 6 electrons and say it is
belonging to a point x y z. Then what happens is that any scattering that will occur if we
go back here then is scattering that will occur; now we will become independent of 260.
Because this is now a simple point if you now have a certain volume associated with this
particular point like here small elemental volume we said; then we will have the
scattering angle changing, otherwise if it is a point atom you will just see the point atom

and the scattering will go; so it is independent of 0.

So, this is an very serious approximation, but it will allow us to imagine a situation
where we can calculate what is the quantity of what is the total information we can get
from this. In this particular case you see that the we define now because of the fact that
there is a scattering from a point atom; the point has all the electrons in it. So, therefore,
if we now calculate this quantity called d(r) which is referred to as a delta function which
is written here this delta function will be equal to 0 everywhere else because atom is only
at one point; a single point atom we have taken the atom is at one point and let us say

this atom is located at r = 0.

So, if the atom is located at r = 0; the expression of here which we have written here p(r)
exp (2mir . R), there is no dependence on the phase. So, it will be p(r)dr . So, that will be |
p(r)dr . So, what happens therefore, is it becomes | p(r) will be now written as 8(r)dr; this
o will be the total number of electrons. The total number of electrons present in this
quantity [5(r)dr therefore, equals to ¢; ¢ is a number which represents the total number of

electrons and in case of carbon it will be 6 nitrogen it will be 7 and so on.

So, this allows us to identify the atom as a single atom single point atom and then prove
the delta function. So, it has certain special properties that it is equal to the [§ (r)dr = ¢ at
r = 0, but everywhere else surround the surroundings; it is not actually a measurable
quantity it equals to 0. Now what happens if there is an atom which is situated not at r =

0, but away fromr= 0.

So, we now see that F(R) can be written as [8(r - r') now the phase factor comes in; how
does it come in? It comes in because of the fact now the atom is not the point atom is not

at the origin; it is removed by a quantity r'. It is located distance r' from the origin and



therefore, we get this expression away from the origin by r' distance. Then we have the
phase factor coming in and the delta function is at r' from the origin and then we will get
these express ¢ which is still the total number of electrons multiplied by the phase factor

which is exp (2@ir . R").

So, this therefore, now gives us the expression for the structure factor. So, if we consider
a delta function which is at the origin; we get this expression, delta function is a special
case of F(R) essentially and therefore, we now define F(R) in the following fashion. So,
this happens if you have a point atom; now suppose we have a large number of point
atoms which is essentially the crystal. In a crystal we have let us say 100 atoms let us
consider all and each and every atom as a point atom if we consider each and every atom

as a point atom; they are located at ry, 1, r3 from the origin.

So, we sit at an origin consider 1y, 15, 13, 14 etcetera the positions of the atoms then now
corresponding to each one of these points we have to add it up; the total F(R) therefore,
will be a summation and this summation will be your all the ry, 1y, 1. So, therefore, it
represents c(i); so c(i) therefore, is the total count of the electron density. So, if there are
let us say C19N,OsH;3; that kind of a molecule and that are there are 4 molecules in the

unit cell.

Then c(i) is the total number of electrons of the entire unit cell and therefore, we see that
the summation is over the entire unit cell, but then the summation is overall only the
atom positions because these are point atoms. And these summation will now give us the
total number of electrons inside the crystal. And every one of them now as a phase factor
depending upon where they are sitting, if they are sitting at r; there is a phase factor, 1,
there is a phase factor, r3 there is a phase factor and therefore, this now represents the

structure factor for a collection of point atoms.

So, what we have done here is we have considered all the atoms to have only all the
electrons and everything associated with the atom to be with a point. And this
approximation is a very very valid approximation from the point of view of calculating
the structure factors. In fact, this is what we are going to use when we determine the
structure by what are known as direct methods. So, we will assume that of course, this is

an impossible situation atoms cannot be associated with one point; they have their own



diameter in which they distribute the nucleus and the electron density around it and so

on.

For practical purposes to get the evaluation of the structure factor this therefore, is a
good and convenient method. So, we say that there are collection of point atoms, but

what is the reality? The reality is the following.
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The reality is that there is a scattering coming from a periodic array. So, when the
scattering comes from a periodic array we have a 3 dimensional lattice; we have the a

axis, we have the b axis, we have the ¢ axis.

Suppose we now consider the atoms to be associated with lattice points; it is not
necessary, but let us say each atom is now associated with the lattice point; then we can
generate this diagram. Now if we generate this diagram then we have to be able to

calculate what is happening with respect to the scattering.

So, any vector in this unit cell; let us say we start from the origin and let us say I take this
lattice point where let us say we have an atom in that lattice point because of the
periodicity it repeats itself. So, from this point to that point let us call this vector as r; the
little vector r a little vector r is in real space this is the actually the position vector the

position vector corresponding to that atom let us say. So, this now is r which is now



represented by (n;, m, n3); 3 integers in the representing the 3 directions the a direction

the b direction and the ¢ direction.

So, let us say if it is one unit cell you have the a, b and ¢ values coming up here. So,
these are therefore, the integral values or rational values more appropriate. So, any vector
r therefore, can be expressed in terms of these rational numbers are integral values nja; +

map + nzas.

So, we have therefore, a lattice a lattice of points instead of point atoms being randomly
distributed as we discuss before; the point atoms are now associated with a lattice point.
When we do that we get the vector r to be nja; + na, + nzas. The volume of the unit cell

is given by a; . a; x ag; this provides the volume of the unit cell.

At this stage we now define a set of vectors by, by, by with very special properties; the
properties are that if we take a; and take the dot product with b; that is equal to 1. And a; .
bx = 0 whenever j # k so; that means, when we have a; . by; the value = 1, a; . by; the
value goes to 0. Now such set of vectors when we define using this expression these

vectors are supposed to be reciprocal of a;, ay, a;.

Now, it becomes; obvious to you why we are doing this? We are doing this in order to
get the representation of R which is our scattering vector and we also know it has
dimensions of reciprocal length. So, we are now trying to get how to express R given the
r in the in a 3 dimensional lattice. So, if when you have a periodic array we consider the r
and we now want to define the R. So, when we do this operation we can show that b; =

(a2 xaz)/(a;.ayXas; aj.axaz by definition is volume.

So, this now becomes a, x a3 divided by the volume similarly b, and b;. So, when we
have these 3 vectors by ,b, ,b; following these vector expressions (a; X a3)/V, (a3 x a;)/ V
and (a; x a;)/V; defining the values of b; ,b, ,bs; then these set of vectors b; ,b, ,b; will be
able to quantify or will be able to represent these are called scattering vector R because it

defines now a lattice of vectors b; ,b, ,b; just like this lattice.

Suppose we now set at an origin and now these are b; b, b; we can define the values of
by ,by ,bs. I am not telling a; ,a, ,a3; = by ,b, ,bs. The by ,b, ,b; is inverse of b; ,b, ,b; or
inverse of a; ,a, ,a; or the reciprocals of a; ,a, ,a3. So, if there are 3 vectors a; ,a, ,a3; the

reciprocal vectors that is 1/a;,1/a,, 1/a3 will be b; ,b, ,b;.



And therefore, these b; ,b, ,b; in principle should describe our vector R which is (s -
s0)/A. So, we therefore, define what is known as a reciprocal lattice which is built up of
the 3 vectors by ,b, ,bs. So, a; ,a, ,a; are the real space vectors; b; ,b, ,bs are the reciprocal

space vectors.

So, what we have done so far and this part of the discussion is to consider the atoms to
be point atoms. And then we have consider the collection of point atoms and then we
have distributed this collection of point atoms to various lattice points in real space. And
then we have defined the quantities which define now the reciprocal space such that
by,by,bs are reciprocal vectors of a;,a;,a;. This will allow us to describe with the r which

is in direct space and the R which is in the reciprocal space.

So, r and R have dimensions of reciprocal length with respect to each other r is the
position vector in real space R in principle is the position vector in the reciprocal space.

So, if we have this knowledge we will see what happens when we have a realistic crystal

ok?
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Now, let us go further this is what was done by Laue that is why I put his picture here
which you already saw in the earlier class because this is his contribution. Now, what is
it that is going to happen if we have a crystal, we have a lattice, we have a;,a,,a; defining
the vector r and by,b,,b; defining the reciprocal lattice vector. So, just like we describe

the r; n;,,m_ n3 as nja, + ma, + nzaz where n;,ny,n; are integers. Now we can describe the



vector R in terms of hy,hy,hs; these are again 3 integers which will define h;b; + hyb, +

h3bs.

So, effectively from the real space you have gone on to a reciprocal space where you are
able to express vectors in the reciprocal space. Now what we will do? We will do a little
small little mathematical operation that is to take the dot product of r . R. Now you might
worry why we are doing this r . R dot product we need this r . R dot product because you
see here you have in this expression r . R the calculation of the structure factor will be

accomplished if we get this quantity r . R ok?

So, we need to have this dot product between the real space vector and the reciprocal
lattice vector. What happens when we do this is that r . R will become h;n;+ hyn, + h; n3
n;,np,n3 are integers hy,hy,h; are integers. So, sum of 3 sets of integers will be an integer;
so this will be an integral number. So, the structure factor F(R) which can be now
expressed see now we will take the total electrons in the unit cell outside; total number of
electrons which equals the total count of the number of electrons associated with all the

atoms in the structure total count is see.

Then summit over ny,n,n3 sum over all values of n;,n,,n3; we then write the exp 2niR .
r). So, this exp(2m i R . r), now is the expression which will now allow us to determine
the phase. This is the amplitude and this is the phase you notice that the amplitude is now
directly proportional to the total number of electrons. So, that why we are in a very

comfortable position; so, we now substitute R . r at this expression.

So, when we do this R . r substitution we will get exp(2x 1 (hyn; + hyn, + h3nz)) and this
now represents every time a point in 3 dimensional space and that 3 dimensional space is
the reciprocal space. And therefore, we get ¢ N, ¢ is the total number of electrons N is the

total number of reciprocal lattice points and therefore, we get F(R) =c¢ N.

Now, what is happening here? If in terms of light what is happening? So, the incoming
radiation is X ray. So, the X rays now come and fall on the crystal; the crystal now acts
as a periodic array and because it acts as a periodic array, it generates the vector the
every position vector r generates the R and therefore, the product R . r will be an integer
value. So, whenever the product R . r is an integer value you get light coming out

whenever the R . r is not an integer value; we will not get a light coming out.



So, what was continues scattering you know we talked about scattering occurring from
an object; it scatters in all possible directions now these directions get in sometimes in a
very loose term quantized. So, these therefore, now will occur in such a way that these
atoms therefore, will now become these sorry, these points will now become organized.
And they get organized in such a way that they have to satisfy these expression ¢ exp(2n

i (hin; + hy ny + h3 n3)) this now being an integer.

And therefore, only when these integral values are there you will get the light out and
whenever the integral values are not there you will not get the light and this process is
the so called process of diffraction. And this has been done by some experiments in your
college days which you might recollect; you would have done it with light. You would

have done the light diffraction experiment and you were given a diffraction grating.

So, this is essentially a glass piece where there were grating marks; they were marked
with equal distances, this is essentially likely the discussion we had on the 2 slit
experiment. So, as we put more and more slits it is equivalent of putting more and more
gratings and therefore, the moment you put gratings; the light which is coming in we will
now get into go through the grating. And the diffraction grating will give the specific

directions in which light can pass through and therefore, you get a diffraction data.

This is a essentially coming because of the lattice because of the fact that we have a 3
dimensional unit cell which now repeats itself in all 3 directions we get this information.
So, it can happen only in crystals or crystalline materials. So, therefore, we get the
diffraction and this is what was discovered by Von Laue for which he was given the

Nobel Prize.

So, what did he do? How did he explain this? He explained it in this fashion if you take
R; R is now (s - sg)/A; we know this is the scattering vector. This is the direction of the
scattering vector it its magnitude is 2sinf/A we have just calculated that. Now, this now
becomes vector h and these vector h will not be all over the place; it is not a continuous
function now; it will happen only if this value is satisfied when it is h;b; + hyb, + hsbs;

hy,hy,h; being integers.

That means, these 3 conditions which are written down here (s - sp)/A is in fact, you can
write it as H. H a;; this is your unit cell dimensiona. So, H.a;=h;,H.ay=hy,, H. a3 =

h;. You can replace h;,hy,h; by h, k, 1 which is normally used in many text books which



you read and these are the so called Miller indices; a; a,a; you can replace by a,b,c

therefore, this is the expression which Laue derived.

So, the H(h;, hy, hs) represents what we call as a reciprocal lattice vector; the dimensions
of the reciprocal lattice vector is proportional to 2sinf/A. And therefore, the diffraction
will occur only when these Laue conditions are satisfied. So; that means, when you send
in the X ray beam on to the crystal only when all these conditions are simultanecously
satisfied then only you will get the diffraction; that means, when you have a 3
dimensional crystal the diffraction will occur only in certain given directions and those

directions now will generate a point.

And therefore, we get a reciprocal lattice point; how does it generate a point is still a

question which we will answer as we go along.



