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Lecture — 30
Crystallographic Directions and Planes

So, we have been now you have enough knowledge gained now on Symmetry we have
the basics of symmetry understood to the extent that we can now deal with crystals. So,

in the last discussion we brought in the issue of a loaf of bread.

(Refer Slide Time: 00:48)

So, a loaf of bread now can be considered as a crystal and if we now look at the size of
the unit cell. Let us say the loaf of bread is the size of a unit cell if we take this point or
that point as the origin; when once the origin is fixed then this is the a direction let us say

this is the b direction and the backside is the ¢ direction.

So, it will say define the one these cell dimensions; from that we can calculate the
volume of the unit cell by using the formula a . (b * ¢) and that will give us the volume
of the unit cell. So, we also know that there are only 7 types of unit cells we can think of
and those unit cells will give the dimensions according to the definitions of @ b ¢ and the

interaxial angles between them.



Having noticed that we now also in fact, can identify the various possible planes through
this unit cell volume. So, the here is the volume of the unit cell and then we now slice the
unit cells into a number of pieces like we slice the piece of bread. And suppose I take the
midpoint of a as a and then cut it and take that slice out that very thin slice out that slice
will be equal to %2 the unit distance along a. And of course, if we consider this particular

point which I am showing now that will be 0 0 with respect to » and c.

So, this is referred to as the crystallographic direction we will in fact, describe these
crystallographic directions in detail in a couple of minutes. So, the direction through the
unit cell is referred to as the crystallographic directions. So, if you go along this direction
it is 1 along the a direction. So, this particular point will be 1 0 0; on this direction of a

will define 1 unit along a.

And if we now consider the 0 0 the intersection associated with » and ¢ and if we take
that slice out that slice will be 1 0 0 and the slice which is at /2 point is 2 0 0 at one third
is 3 0 0 and so on. So, these numbers which we give 1 2 3 etc.., they refer to the so called
hkl values and this we will define in a few minutes as the Miller indices. And these Akl
values define they play any given plane in a crystal. So, if we have these Akl values given

to you; you have to identify them with respect to your plane.

So, how do we identify the crystallographic directions then; what are the identities we

can give for a direction in a crystal?

(Refer Slide Time: 03:36)

Crystallographic Directions

Since crystals are anisotropic, it is necessary to specify in a simple way
directions (or planes) in which specific physical properties are observed.

Two lattice points define a lattice row. In a lattice there are an infinite
number of parallel rows
' Two different lattice points
o = Qj12,Qg36m
S J/‘ represent same direction
in a primitive lattice [3 1 2]

If the lattice is non primitive

Q Y, 312, -1 S,Q 5/2.15/2, -5/3
=

[39-2]

Lattice rows and planes



So, that can be seen from this illustration down here. So, we have because you see the
single crystals which we grow are anisotropic. So, it is necessary to specify the simple
way in which we can define directions or eventually planes in which we have to observe

the physical property.

Suppose let us say with the property of a given crystal it shows ferroelectricity or for that
matter it shows some specific physical property in a given direction. We have to specify
the direction in the crystal; the reason is that in the other directions the same property

may not be expected may not be present.

So, this is a property of the material; so, if we are looking for the property of the material
into which we have of which we have grown a single crystal then the single crystal will
have to be specified with respect to the direction or the plane about which these physical

properties are measured.

For example, it could be a certain value of the dielectric constant which is now measured
along a particular direction. So, when we have single crystals therefore, we identify the
directions put those directions in the device which will measure that property and we can
measure that property in that given direction. So, these therefore, the definition of a

crystallographic direction and plane become extremely important.

These points are or probably not very well explained in any textbook, but in these
discussions we will go specifically with respect to the understanding of the
crystallographic directions and planes; with the view that we are going to measure

physical properties later on.

For example, if you are measuring the elastic constants of a given crystal the elastic
constant direction has to be specified. So, we will have a just like anisotropy in the single
crystal we will also have anisotropy in the elastic properties; these as anisotropy can be

expressed in terms of a matrix and those matrix values can be calculated.

So, to make it very simple we will now take any 2 lattice points let us take this diagram
here any 2 lattice points and then continuation in that particular direction defines what is
known as a lattice row. So, for example, this is a lattice row that is a lattice row and that

is a lattice row. So, a row of lattice points is referred to as a lattice row and this could be



along a direction it could be along b direction it could be along ¢ direction; it could be

along any direction inside the unit cell and that needs to be particularly specified.

So, as you see that in a lattice there are in infinite number of parallel planes the
illustration here shows a few of them; so, you can draw any number of them. So, if we
take two different lattice points just to make points clear if we take two different points
Q ;312 for example, Q represents the vector in the direction of 3 1 2 and that represents a
given direction. So, if you take the Q as the value associated with the direction 3 1 2; this
is a measure the vector distance is a measure of where the 3 1 2 comes with respect to an

origin; obviously, we need a definition of an origin.

Suppose let us say I define this as the origin and take this as 1 2 3 that will be a 3
position and then I have a one in the direction perpendicular to that; so, I can take this
and that as 3 1. Now if [ want to represent a direction which is perpendicular to that I can
take this direction. So, for example, if the point here can be represented in terms of the
origin here as 1 along this direction, 2 along that direction and 0 along the third direction.
So, these therefore, now defines a direction way from here to here one can define a Q
vector. A Q vector therefore, is a direction dependent vector and that can in case of 3 1 2

can be represented within this diagram.

Suppose we take something like Q ¢ 3 ¢ which is far away in the unit cell; now we would
like to find out whether 3 1 2 and 9 3 6 represent the same direction. In fact, they do
represent the same direction if it is a primitive lattice and that is because of the fact that 3
12 and 9 3 6 have a common factor between them. So, you can take the common factors

that is 3 times 3 is 9 1 times 3 is 3 and 2 times 3 is 6.

So, once again 3 1 2 and 9 3 6 they represent the same direction. So, when we say the in
bracket [3 1 2]; it comprises of all possible directions in that orientationof3 1 2.3 12 is
a specified direction and we have to therefore, represent all the lattice points in that
direction. So, if we now put this square bracket it represents all possible directions in 3 1
2; if we just say 3 1 2, that will refer to the with within the bracket as we have shown
here the then it represents the direction 3 1 2 and all the family members which are

factorizable under 3 1 2 belong to this direction.

The points are different, but the direction is the same; so, when we say 3 1 2 that

specifies the direction. So, the specification of the direction is by crystallographic



nomenclature done by the brackets; the square brackets [ ]. You might look into a
situation when it is a non primitive lattice. A non primitive lattice is one in which we do
we have centering for example, we have a C centered lattice, we have a F centered
lattice, we have [ centered lattice and so on in which case the lattice points may occur at

0 0 0 and also at 2 % % which is a fraction.

So, if the lattice points are fractional like is shown here where direction Q which is 1/2
3/2 -1/3. And then there is a direction which is a Q which is 5/2, 15/2,-5/3; both of these
represent a single direction in crystallographic direction and that crystallographic
directions happens to be [3 9 -2]. How do we get [3 9 -2] with these two? What we have
to do is we have to take the LCM of the lower numbers 2, 3 and 3; we take the lowest

common multiple and then we represent them then we represent the direction.

So, we see here for example, one % ; one 2 times this is 6. So, 1 by it; so if we multiply
this by 3 ok, if we multiply this quantity by 3 then the least common multiple is 6; so,
you get what? You get 2. So, 3 by 6 is /2 and 9 by 2 and in this particular case it is 9 by
6. So, it will be 3 by 2 and so on. So, the same thing happens to the logic here you have
to take the LCM of these three numbers and these three numbers and these three numbers
in the denominator or common and therefore, we the representation of the direction is [3

9.-2].

So, we get to represent both the direct lattice points in the primitive lattice as well as in
the non primitive lattices by this kind of direction identification. A better way to look at
it is to take several fractions and then see what direction it represents by taking the least
squares LCM of these numbers at the as the lower part of the fraction the denominator of
the fraction. And then calculating the corresponding planes which will represent the top
part; so, which is the numerator of that. So, effectively what we do is we once we take
the LCM we cancel out that number and whatever number remains in the numerator is

represented here.

So, if you do that operation on these two cases you will get [3 9 -2]. So, this brings us to
an idea of how we represent crystallographic directions in a unit cell. So, now, it is
possible therefore whether it is a primitive cell or a non primitive cell; it is possible to
identify directions in terms of 3 numbers and 3 integers rather. And these 3 integers

could be both positive as well as negative depending upon where you define your origin.



So, the origin definition becomes crucial and one once we have 0 0 0 defined then all the
directions in the crystallographic unit cell can be identified. So, there are numerable
number of such things infinite number of such possibilities and all these possibilities are
accounted for. And also many of the lines many of the lattice points will form which will
lie on the direction of this crystallographic direction which we have defined all those
lattice points will also belong to the same direction. So, there may be a large number of
lattice points in a given direction there will be less number of lattice points in a given

direction depending upon the value of the unit cell in those directions.

So, the unit cell decides what should be the total number of crystallographic directions
we can have in a unit cell. Of course, the unit cell will itself have the possibility of 7
different types of lattices. So, the lattices both primitive as well as the centered ones or
the non primitive lattices can be covered under the definition of crystallographic

directions.
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Crystallographic planes
Three lattice points define a crystallographic plane.

p.0.0 The equation to the plane is
x'Ipa+y'/gh+2'[rc=1.
If we introduce the fractional coordinates
x=x'la,y=y'[b,z=2"[c
xlp+ylg+zlr=1
Multiplying both sides by m we obtain

hx+ky+lz=m

\ where m is the least common multiple of p,q,r
0,0, \\ and 1 is the largest common integer factor

0,,0
Some lattice planes of the set (236).

So, having learnt what crystallographic directions are we will now go to the
crystallographic planes. In case of a crystallographic planes we need 3 lattice points the
diagram below is shown here it represents the 2 3 6 that is because I have shown two
along this direction 2 units and then you see the lattice points two are along these
direction and here it is 1 2 3 4 5 6 along the vector r along the vector p it is 2 and along

the vector q it is 1 2 and 3.



So, this now let say tells us that if we join these 3 points p 0 0, 0 0 7 and 0 g 0 from the
origin which is at 0 0 0 this now represents the plane 2 3 6; 2 units along the x axis 3
units along the y axis and 6 units along the z axis and that represents the plane 2 3 6. If
we write 2 3 6 in brackets [2 3 6] it represents all planes which are parallel to this plane
and depending upon whether it is a non primitive lattice or a primitive lattice; we can

have a number of lattice planes.

And these are all parallel planes as we have seen drawn here this is one plane this is
another plane which is passing through this lattice then there is a plane passing through
that lattice point and so on. And eventually we have a lattice point which passes through
these 3 this will be actually the family 2 3 6; even though we now see it is 1; 1 2 3 along

these direction and 1 2 along that direction.

So, the lattice planes belonging to 2 3 6 can be represented in this fashion. All the lattices
lattice planes which come within the 2 3 6 direction will be less than the 2 3 6 value of
the unit cell. Now the we have to develop an equation to this plane; so, equation to any

plane is the value of x in that direction and the total length a.

So, suppose we have a unit cell @ b ¢ then the equation to the plane is along a we can
have a x’/a fraction which can represent our. For example, if we take this as p then the
fraction is x’/ pa and x is the direction of the unit cell and if the value of the unit cell is
a; we restrict the direction to stop at the point a because we it repeats again because of

the periodicity.

Because of the periodicity nature we have therefore, the unit cell @ unit cell 5 unit cell ¢
representing the unit the entire unit cell unit directions. And then xX’/p y’/q and z’/r
represents the fractional units along those 2 3 directions. And therefore, this will be the
equation to the plane and that we equate equal to 1. If we now introduce the fractional
coordinates and that is why time and again we have mentioned even in our earlier
discussions; that when we refer to a position x y z it represents the fractional coordinates
associated with the system. It is because now we define the fractional coordinate x as

x/ay’/band z/c.

So, therefore, you can write the equation to the plane as x/p+ y/g+ z/r = 1. So, this is the
equation to the plane; so, any plane in the crystallographic unit cell can be defined by

this particular fashion x/p+ y/g+ z/r = 1. Now we multiply both sides by a quantity called



“m” which is an integer; this is because of the fact that we want to represent the entire set
of planes in all these intersections. And in order to do that we have to now take the

common least common multiple of p g r.

So, we take the least common multiple LCM of p ¢ r and that represents all possible
values of m which will now be equating to this plane; that represents the family of
planes. This is a single plane which is 2 3 6 in these example we have given here and the
hx + ky + Iz = m; where m is an integer represents all these planes that are possible inside

this representation of the 3 lattice intersection points which hold a plane.

So, p g r now, therefore, define the plane 2 3 6. So, we have seen therefore, the way in
which the crystallographic directions and the crystallographic planes can be
mathematically calculated. But we want to make it as simple as possible in our

discussions we have kept it at a very simple level.
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Miller Indices
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This is the (1,0) plane, it never cuts the (y) axis

And so we will look at it this way. So, suppose you take in you know we always want it

in 2 dimensions it is easy to understand in 2 dimensions.

So, the we now have to see that the third direction is coming towards you. So, it is a 3
dimensional unit cell and in this unit cell the lattice points; let us say this is the a
direction and this is the » direction these are the lattice points ok; these are the lattice

points this is a and that is b, ¢ is coming out towards us.



Now if we want to represent the so called one unit along @ and one unit along ¢; now
these lines which we have we have drawn now represent the entire family of 1 1. The
family that is associated with 1 along a, suppose this is the origin this is the one value of

a and that is the one value of b.

So, the entire family of 1 1 is illustrated by this set of parallel planes of course, we at this
particular way position consider the line here and the ¢ is coming perpendicular to that
and that is taken as 0 in these example. So, if we take this 2 dimensional case we have
the 1 1 and I still call it a plane because we have the ¢ direction perpendicular to that; so,
this is the 1 1 plane in 2 dimensions one along this one along that. Suppose we look at
this picture in this picture you see they even though there are points which are now
corresponding to lattice a and lattice b; you see that there is an additional point which

comes 2 way along a and %2 way along b and these now all are also parallel lines.

So, when you consider these parallel lines; you see that now we have to represent this as
the as far as b is concerned we have divided into ¥2 and %, a is still the same as before
the b direction which has been cut into 2 and therefore, this becomes 1 2. In that
discussion in the same way we can now define the; so, called 1 0 plane because if you
just take the x direction and this is the value of one and then y will be like this. So, the 1

0 plane will be running parallel to the y axis.

So, all the planes which are running parallel to the y axis will belong to 1 0 plane. So, y is
the direction y is the direction of the unit cell and the planes are now parallel to that in
the sense that this 1 0 plane; the family of 1 0 plane 1 0,2 0, 3 0, 4 0, 5 0 whatever be the
number all of them will be parallel to y axis. In this case all of them will be 1 2 planes of
entire family of 1 2 plane; that means, 2 4 and 3 6 all these will be also belonging to this
family of planes. So, the family of planes therefore, are represented in brackets; let us see

how we can generalize it a little more.
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Fig. 1.6. Miller indices for some crystallographic
planes parallel to Z(Zis supposed to be normal
to the page).

We can generalize it a little more by looking at this diagram. Now this diagram tells us
that we have a lattice this is the 0 point and these are the lattice points along the a
direction and these are the lattice points along the b direction and these are the lattice

points which define our unit cell.

And so, this now if you consider this point this point this point this point these 4 now
define the values associated with in 1 units of lattices. And let us say this is the primitive
lattice; if we consider that as a primitive lattice then we have this family of planes which
is one along a and one along b; you see this is the origin ok. So, you take one along a and

one along b you get this plane.

Now, you can draw a parallel plane now this parallel plane cuts at 1 and 2 along this
direction 1 and 2 along that direction; the value of ¢ is equal to 0 because we are now
taking the projection a b and so, this is 1 1 0. So, the family of planes is now represented
as 1 1 0. So, the when whenever we write a bracket like this it represents the family of
planes. If we do not write any bracket and just write 1 1 0 by crystallographic

nomenclature 1 1 0 refers only to that plane.

So, suppose there you are trying to say where the atom is sitting in which plane a given
atom is sitting; this atom may be sitting at 1 1 0 then you do not write the brackets.
Because if an atom is sitting at 1 1 0 it does not mean it will sit at all the parallel planes

understand.



So, if there is an atom sitting at let us say 2 2 0 and then let us say there is a whole 5 or 6
atom sitting in 2 2 0 ok; then it is not necessary that any atom need to sit at 1 1 0, but
these are all parallel planes. So, since they are all parallel planes the family of planes is
represented in bracket and when we look at the scattering in a few minutes from now;

you will see that the scattering is dominated by these planes.

So, let me now bring that discussion now itself, but we will make it more clear as we go
along. What we do is we have a unit cell and that particular unit cell is like this a loaf of
bread; now this particular unit cell can be cut into a large number of planes; we can have
defined crystallographic directions we can have crystallographic planes and so on. And
so when we now send a probe which could be a electromagnetic radiation, it will go
through this loaf of bread and it will pass through all these planes all these directions; all

these planes.

Now, suppose we now populate these planes with atoms; let us say as we discussed in
the last part of our previous discussion. Suppose this is a special bread and you have
additives in this you may have cashews added, you may have badam added and so on.
So, we do not know where these additives are sitting inside the loaf of bread it is not
visible; so, but when we slice this and take a take a plane out of this slice, let us say we
take 2 0 O in that particular slice we may find a piece of badam and a piece of the

cashew.

So, a same logic can be applied to atoms inside the unit cell; the atoms and the molecules
are whatever which exists inside the unit cell are now distributed inside the unit cell
among all these planes. But what we do in a diffraction experiment which we will do
soon is to now shine some radiation electromagnetic radiation. The electromagnetic
radiation will go through the crystal it will go through the crystal it is like entering a rarer
to a denser medium and then it will emerge to a rarer medium. So, there will be
reflection, refraction all kinds of possibilities that can occur with waves; same thing will
happen, but then if these planes are now populated with let us say these additives like for

example, atoms of different sizes and different electron densities and so on.

Electromagnetic waves are made up of electric waves the electric field is associated with
an incoming electromagnetic wave. These electromagnetic wave even the ordinary light

is an electromagnetic wave as you all know; so it has an electric component. So, when it



looks at an atom let us say that particular atom will have its own characteristics;

particularly it has an electron density around the central nucleus.

And that electron density responds to the incoming scattered radiation incoming
radiation and then it scatters the radiation. It finds it is something like you know you are
moving in a crowded town centre and you are going in a straight line, but then a group of
10 people come in front of you will have to either go away from them or shoulder them

and go through.

So, that is exactly what happens to the incoming radiation it finds the atoms and
therefore, electron density in its path and when it finds that it has to scatter it has to move
in a different direction and that is exactly what we will happen. And therefore, we have
to now see what is the consequence of such experiments which we are going to perform

on the crystal.

So, to continue our discussion at the moment we have defined the crystallographic
directions, we have defined the crystallographic planes we have to completely now
finalize how to define the crystallographic planes. For example, here I had shown you
the 1 1 0 set of planes; here the this shows the 0 1 0 set of planes that is the all those
planes which are parallel to the x axis ok; all those planes which are parallel to the x axis

and of course, we are taking 2 dimensional plane here. So, it is ¢ is automatically set to 0.

So,01 0,01 0represents this and suppose I now want to represent 1 3 0 you see that the
1 3 0; that means,1 along the a direction and 3 units along the b direction. So, this has to
move up here and this is 1 2 3 and those are now the parallel set of 1 3 0. And similarly 2
-1 0 is shown in order to for you to understand the way in which the planes develop with

respect to the crystallographic unit cell @ and b with an origin defined.

So, you have the family 100 sorry 110,010, 130, 2 -1 0 and when we have put these
normal brackets () around it represents all the planes from 1 equals 1 to nand 1 to n and

in this case one goes from 1 to n.

Here 2 goes from the value of 2 to 2 times the next value that is again 2. So, it will be 4 -
2 0, 6 -3 0 and so on; so those are the parallel. So, all parallel planes get represented as
families; if we just want to refer to one particular plane as we discussed suppose there is

one atom only at this particular plane; then we say that the atom is associated with a Akl



plane. That 4kl now you see has no brackets around it, so we are now identifying that

particular plane A4/ about which the atom position is located.

So, if atom is located here we say that the atom is located with respect to the plane 1 0 0;
it is always possible to locate atoms anywhere in the unit cell, it is not necessary that
they should be associated with the lattice planes. But when we do the scattering
experiment as I already defined the scattering experiment is happening with respect to
the planes. So, there may be an atom associated with the plane, there may not be an atom
associated with the plane, but the when light comes and falls on that light will get

scattered and that scattering is independent of whether it has an atom or not.

So, if there is no atom it will pass through the crystal and there is no scattering occurring.
If there is an atom as I said there will be some disturbance and therefore, scattering
occurs. But if there are atoms which are situated between these 2; suppose there is an
atom here this atom now contributes to all the parallel planes, it not only contributes to
the parallel planes it also contributes to the planes which are in other directions as well.
So, that is something which we will evaluate in a couple of classes from now; what is the

contribution of the atom to a given plane.

So, to cut the long story short here is a gist of what I would like to say in the last half an
hour’s discussion and this is very very crucial. What we now want to do is to examine
the inside of the unit cell we have now understood that there is symmetry, we have
understood all possible symmetries that can occur inside crystals, 7 crystal systems 32
point groups 230 space groups; we now thoroughly know where the equivalent points

come in a given space group what is the special position and so on.

Now, these are all the possibilities that can occur inside a crystal; we have understood
also the way in which the lattice develops itself in 3 dimensions to define the structure to
define the crystal. So, having got that basic information and having understood all rules
of symmetry; we now consider situations where atoms and molecules can get inside this
crystal, but the way the atoms and molecules are getting inside this crystal is like the

additives getting added inside the bread loaf.

But what we are going to measure in X ray diffraction techniques which we are going to
discuss in a few minutes from now is the fact that it is coming from the planes. So,

whatever scattering is occurring; the incoming radiation now will see these planes and



these planes now will scatter the incoming radiation. So, whether a particular plane
which we identify here is having an atom or not; the atoms which are present inside the

unit cell will contribute to that.

So, we have to see a what in what way they contribute to that and in what way we get to
the scattering information from that particular plane. Obviously, if we get all the
information from the scattering planes of this kind; in principle we should be able to
guess where these little pieces or in fact, the pieces of whatever additives we have added
in this particular example what are the atoms and where they are sitting inside the unit

cell.

So, we can identify the atomic positions we therefore, can identify the bonding
associated with the atom positions and hence the structure that is associated with the
atom. So, the logic therefore, is that when we do the crystallographic measurement; now
which we are going to do on a unit cell which about which all the rules and regulations
about which have been framed by us already. So, we now know the grammar of the

situation, we can now construct a novel.

The construction of the novel now goes the fact that we have now to determine what is
there inside the unit cell; what is there in the unit cell or the atoms and the molecules and
so on which consists of nuclei and the electron density around it so happens that when X
rays fall on a given atom we will see in a few minutes. When X rays fall on a given atom
it is the electrons that scattered; X rays normally do not approach the nuclei they do not
have the power enough to approach the nuclei. And at the same time the X rays which
are used are about 1 A in diameter in sorry in wave length and the atom has a diameter in
the range of angstroms and therefore, the electron density around the atoms or in the

range of angstroms.

So, essentially the electron density it is the electrons which scatter X rays; we should
never forget it when we do our X ray analysis. Because whenever you probe through X
rays you will see the electron density; whenever you probe through just to information
sake whenever you probe through neutrons, you get the positions of the nuclei. And
whenever do you do electron diffraction again you will get the electronic information.
So, these are issues which we will discuss more and more in order to understand where

the atoms are sitting.



So, the take home from this slide is these are the definitions of the planes, different kinds
of planes, we have family of planes, individual planes are represented like this. And there
is one more representation which I must mention here is the representation of Akl in
flower brackets { }. When you see them in flower brackets it refers to all the 4, &, I; k, |/,
h; I, k, h and so on. So, this is entirely dependent upon how symmetry dominates the /k/

values.

And in other words how symmetry controls the orientation of the planes and this kind of
o]

restrictions come in only higher symmetries crystal systems. Cubic systems have this that

for example, in a cubic system sincea=b=c¢,a = =1y are 90 , 100, 010 and 001;

these are all one and the same because we cannot distinguish between a b and c.

So, when we now represent the skl associated with it; all these get represented not just
100, -100, 010, 0 -10, 001 and 00 -1. So, it is degenerate to that extent because a = b =c¢
and so, such planes are represented in flower brackets. So, when you write in flower

bracket and say 100; it represents all the 6, I mentioned in the case of a cubic system.

So, these are the nomenclatures. So, Akl alone and represents one plane; 4kl in brackets (
) represent now the family of planes and Akl in flower brackets { } represent all
combinations of this depending upon the symmetry conditions which we impose. Now
once again to generally remind you that if I have a square bracket and say [110]; it
represents a crystallographic direction. Suppose I have a square bracket and say [111]; it

is the diagonal of the particular unit cell whatever is the unit cell.

So, the crystallographic direction is therefore, different from the crystallographic plane
and that is that is what we learned in the last half an hour or so. And so this is something
which is very crucial for us to remember and when we lead read literature; in literature
people normally refer to these without any introduction to what they are writing about

and therefore, it is important to know these nomenclatures.



