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Perturbation Theory 
 

Stressing cases where the Schrodinger equation can be solved exactly, we discussed 

particle in a box, we discussed the harmonic oscillator, we discussed the hydrogen atom, 

and now very quickly I have told you the results for the rigid rotator now. So, therefore, 

you may be under impression that the Schrodinger equation can be solved for any 

problem, but that is not the way it is. Like there are only very few problems for which 

you can find the analytic solutions of the Schrodinger equation; these days of course, you 

have very powerful computers and therefore you can actually solve the Schrodinger 

equation numerically on the computer, right. But suppose you do not want to do that, 

because we see numerical solutions many a times do not give you physical ideas; 

physical concepts are not very transparent if you have a numerical solution. 

So, and also there are problems in which you are not terribly interested in finding the 

exact solution. You would be happy if you can get some kind of estimates and 

understand the phenomenon. So, there have been approximate procedures of analyzing 

the solutions of the Schrodinger equation. For example imagine that I have a diatomic 

molecule like the one that I was describing to you now, and what I am going to do is I 

am going to subject it to an electric field. The molecule was freely rotating, but the 

moment I see okay, I will subject it to an electric field may be in the z direction. Then 

what happens is that the space is no longer isotropic. Earlier it was rotating freely, but 

the moment you say there is an electric field I think in the upward direction what will 

happen? The molecule, you see molecule has usually molecules have dipole moments, 

right, which means that one end is positively charged then the other end is negatively 

charged. 

So, if the molecule has a dipole moment, what will happen? You see the electric field 

will interact with dipole and so the rotation will no longer be completely free, right. So, 

therefore, you are externally acting on the molecule essentially. If the moment as it 

shown an electric field I am affecting the motion of the molecule, right, and so what will 



happen is that the Schrodinger equation that I would have will no longer be the simple 

one. It will have an additional term coming from the interaction of the molecule with the 

externally applied electric field. And many a times this external influence that you make 

on the molecule it is not large; it is only a small disturbance, right. And therefore, I can 

give you other examples you see. 
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Suppose I talked about a conjugated system maybe something like this; there are 

hydrogen atoms I am not showing them, okay. There are hydrogen atoms as many as you 

want to satisfy the valances of these carbon atoms, and then the simplest thing is to say 

okay, I would have a particle in a one dimensional box which looks probably like that, 

right, and they have to say okay, if I am interested in the pi electrons of the system they 

may be assumed to be contained in a box of appropriate length, and they cannot go 

outside, and then you will calculate the allowed energy levels such a system, right. This 

is something that I have already told you, but now suppose I have as a chemist you see I 

can always replace this one of the carbons with nitrogen. 

And suppose I want to think of this system what is happening is that while you can say at 

least roughly speaking the potential is the same in these regions, but when it approaches 

the nitrogen, nitrogen is more electronegative and therefore, in that region may be the 

potential energy is not the same as l square, but it is going to be less. So, therefore, if I 

had such a molecule, what will I do? I will say okay, the box is not exactly like the one 



previously, but what it would have is in the vicinity of the nitrogen the potential is lower 

which I can perhaps draw in this fashion. So, you see if it is in this region I say the 

potential is lower while if it is outside the potential is the same as before. 

This is very a crude model I have admitted, but then you can say what is happening is 

that there is a slight modification of the potential in a small region, and that what will it 

do? You see originally if you were thinking of this system the ground state the lowest 

possible state would look something like that you know that, because we have discussed 

this, and then what was the question that I would ask is suppose you make this slight 

change in the potential, what will happen to the wave function? How much would it get 

modified; not only how much would get modified, how much would its energy change? 

You know definitely that the energy of the system has to change. So, how much would it 

change? And this is only a small disturbance, right. 

Now I can also give you another example. Imagine that I have a hydrogen atom. So, here 

is my hydrogen atom, and you know that the electron may be sitting in the 1 s if the 

hydrogen atom is in the ground state, or may be it may be sitting in 2 s or 2 p whichever 

state you want, okay, and well, let me just depend up n your previous knowledge. You 

have to give an energy of 13.2 electron volts, if you want to remove the electron from the 

ground state of the hydrogen atom, 13.2 electron volts are required; that means if you 

wanted to remove the electron roughly speaking from here to maybe 10 Angstroms a 

way you have to spend you have to supply a roughly; I mean this is only a rough because 

strictly speaking this is the energy required to take it to infinity, but I mean once it is 10 

Angstroms a way the expense of the proton is negligible. 

So, roughly if you have to take it to a distance of 10 Angstroms you have to spend that 

much energy and I mean this is only a kind of estimate that a physicist would make. This 

means that approximately speaking you have an electric field that the electron is 

experiencing. You see the proton is charged and therefore, what will happen? Anything 

around it will feel an electric field, and I want to know how much is the magnitude of the 

electric field? So, from this information typically I can calculate the electric field; what I 

would find is that it will be something like 13.2 divided by 10 Angstroms is how much? 

10 into 10 to the power of minus 10 meters correct. So, approximately what will happen 

is that were electric field of course, I mean I should say 13.2 volts divided by that and 

therefore, what happens is that you will estimate roughly speaking there should be 



something of the order of 10 to the power of volts per meter the electric field, I mean this 

is a very good estimate to give you an idea. 

The electron near the proton actually fills an electric field of the order of roughly 10 to 

the power of 10 volts per meter. Now suppose in my lab I am doing an experiment in 

which I apply an electric field; the electric field that I apply may be 100 volts over a 

large distance not a small distance of the order of the Angstroms, right. So, the electric 

fields that we normally apply but of course I can have specialized experiments where the 

electric fields are very large, but normally if the electric fields that we would apply 

would be very small in comparison with the electric field that the electron experiences 

with in the atom. 
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So, therefore, if you are thinking of the hydrogen atom you can say okay, I have my 

Hamiltonian for the hydrogen atom; I am not going to write down the Hamiltonian, but 

you know what the Hamiltonian is for the internal motion of the hydrogen atom, and if 

you say that you are going to apply a standard electric field which you may denote by 

what we got. So, notation should I use is a question? Well, let me denote it by capital E, 

and if you apply it in the z direction then what will happen is that there is an additional 

term because of the interaction of the electric field with the charges, and that additional 

term would look like this minus E into capital E; capital E is the externally applied 

electric field and E z is the z coordinate of the electron. Why z coordinate because I am 



applying the electric field in the z direction. If you had applied it in the y direction they 

you would have had y there. 

So, effectively I mean the details are not very important at this point of time. Then 

effectively what is happening is that I have a Hamiltonian, right, like may be the 

harmonic oscillator or the hydrogen atom. What I am doing is I am modifying that 

Hamiltonian by a small amount changing the Hamiltonian by a tiny amount. By applying 

an external electric field or by replacing one of the carbons with hydrogen; again I am 

modifying my potential there. So, there I can now generalize this, and say okay, I have a 

Hamiltonian which I will denote as H 0. Now this notation can be confusing because this 

may mean H to the power of 0; I mean you may interpret this as H to the power of 0. I do 

not want that to happen. So, I will put this 0 within a bracket to indicate that this is my 

Hamiltonian. 

For example, this may be the Hamiltonian for the hydrogen atom without any electric 

field, or it may be the Hamiltonian for the harmonic oscillator; one of these things for 

which we actually know the solution of the Schrodinger equation or may be the rigid 

rotator. We know precisely; today we have seen the Hamiltonian. So, it is one of them, 

and then what am I going to do? I am going to have a perturbation; perturbation means 

disturbance, right. How you apply may be an electric field or something you do, right; 

you replace a carbon with nitrogen. So, therefore, I have a disturbance, and that 

disturbance I am going to write as lambda times H 1. Why did I introduce a lambda? 

Well, if you want to have a physical example you can think of lambda as the electric 

field if you feel like; it is not necessary to think of it as an electric field. 

So, there is a parameter lambda may be the electric field. When I change the value of 

lambda, what will happen? The disturbance that I cause is going to change; I mean I 

increase the electric field. So, the disturbance will increase, and this is my total 

Hamiltonian of the system, okay. Well, maybe I should put hat everywhere, and this 

actually is H is now a function formally of lambda, but as I have told you the effect of 

this term I would extract will be small in comparison with the effect of that. This is huge; 

I mean for example, hydrogen atom example I have showed you electric fields that exist 

in the hydrogen atom could be of the order of 10 to the power of 10 volts per meter when 

the electric fields that I obtain may be perhaps 100 volts per meter or much smaller 

essential. 



So, what is it that I want to do? I want to find solutions of this equation H lambda 

operating upon psi is equal to E psi, but because your H is dependent upon the parameter 

lambda, what would you expect? The energy also has to depend upon the value of 

lambda; I mean if I have an electric field applied then naturally the energy of the system 

will change when I change the electric field. So, therefore, this has to be a function of 

lambda; not only that the wave function when I change the electric field the wave 

function also should change. Therefore, this is going to be everything is going to depend 

upon lambda. That is actually obvious, and further you say the way things are I know 

exactly the solution of the Schrodinger equation for this Hamiltonian, because you see 

this is for example, the hydrogen atom; I know precisely what the solutions of the 

Schrodinger equation are, correct. 

Your Hamiltonian is such that I know I am assuming that I know the solutions of the 

Schrodinger equation if this was the Hamiltonian; that means if lambda was equal to 0, 

suppose lambda was equal to 0 then my Hamiltonian will be that and I know what the 

solutions are. So, therefore, let me say that imagine H 0 operates up on something. I will 

need a notation for that; that will be equal to some E into psi, correct. Well, here 

effectively what is happening is that I put lambda equal to 0, right. And then what will 

happen? Here I would have psi when lambda is actually equal to psi by lambda is equal 

to 0, and how many psi’s can I find? I can solve this exactly; therefore, I would have 

found all possible solutions. So, in a large number of in principle infinite number of 

Eigen functions and Eigen values. So, therefore, I would have different possible states of 

the system which I made invert to the subscript n. 

And here also I would have to put the subscript n, here also I would have to put subscript 

n, because the energy will depend up on that subscript, right, and then what will happen 

is that you see that these are actually Eigen functions of your unperturbed Hamiltonian, 

and this term, also this H 0 is referred to as the unperturbed Hamiltonian while this one is 

referred to as the perturbation. This whole thing is my perturbation; that is why disturb 

my system, and when you look at this equation you say the psi n’s here are Eigen 

functions of H 0 the unperturbed Hamiltonian. So, therefore, because we are going to 

have several psi’s sitting in different places it is best that I put a superscript 0 here also, 

because these are solutions corresponding to that Hamiltonian which means that I should 

put a 0 here or here as well as a 0 there. 



It is necessary; I mean we should not get confused when we say different psi. So, the 

moment you see this 0 there you will realize that this is actually an Eigen function of H 

0, okay, and further this psi n 0; well, one more thing I want to say your unperturbed 

system had several energy levels, correct. So, if I can draw the allowed energy levels this 

is probably something like allowed energy level which are having energy E n 0. We can 

have the ground state with n equal to 1, next state with n equal to 2, or ground state I 

should not say n equal to 1; n equal to 0 is the usual notation for the ground state, and 

then what will happen? As I increase my electric field or as I increase my disturbance 

what will happen is that these energy levels are going to change. So, therefore, let me say 

what is going to happen is that I will have a new ground state, then another new first 

excited state, another new second excited state, third, fourth, etcetera. So, the energy 

levels are no longer coinciding with this. 

So, this is the ground state. This actually this one is the ground state in the absences of 

any disturbance, and this is the first excited state in the absence of any disturbance; first 

excited stage with disturbance and so on. So, therefore, you see this Hamiltonian itself 

has several different Eigen functions and their corresponding Eigen values. So, it is only 

natural that I should put a subscript n here, a subscript n here and the subscript n there, 

and further I actually know that E n lambda. As I change the value of lambda, what will 

happen? E l lambda is going to change, correct, and if I had lambda various nodes 

lambda close to 0, what will happen? E n lambda will actually be equal to the 

unperturbed energy level and therefore, I would say that E n 0 will be if lambda is 0 this 

is actually true, but if lambda is not true, sorry lambda is not zero then this will not be 

true. 

But if lambda is very small then what I can say is okay, there will be corrections to this 

energy, and those corrections will be, well, we can say linear; these small corrections that 

you would have will be linearly dependent upon lambda. So, therefore, I would have to 

say okay, lambda times the correction, right; it will be linear, but now you can imagine 

that when lambda is very small this E n is a function of lambda. So, you can imagine that 

you are going to do a Taylor expansion of n lambda about lambda equal to 0. If I did a 

Taylor expansion what will happen? You will get I mean may be if you want I can 

remind you f of lambda if you detect Taylor expansion what is going to happen you will 



get f at lambda equal to 0 plus lambda times f prime at the 0 plus lambda square by 2 

factorial f double prime 0 plus etcetera; that is what is going to happen. 

So, what is important for us is actually it is possible for me to imagine expanding E n 

lambda as a series in lambda, and the first term the unperturbed term will be E n 0 and 

the next time will be lambda times E n 1; this is not my notation. This whole thing is my 

correction to the energy, and then if I wanted the next correction, what will happen is 

that it is going to be equal to lambda square into E n 2 plus etcetera. So, that is the way I 

write the expression, and now I will use the following words. This is my unperturbed 

energy unperturbed energy; this is my first order correction to the energy. That is my 

second order correction, then I can think of third order, fourth order, fifth order, okay if I 

want. In a similar fashion I can think of the wave function, what will happen with my 

wave functions? Psi n lambda I can imagine. 

What is going to happen is that I would have psi n 0 plus lambda times psi n 1. So, this is 

actually this whole thing is my first order correction to the wave function, then lambda 

square times psi n to second order this whole thing again is my second order correction 

to the wave function and so on. So, what is it that I would like to do? I would like to 

estimate the first order correction to the energy; I have applied an electric field that I 

want to know, what is the modification of the energy level? So, this I would like to 

calculate; if possible I would like to calculate that and so on, but already as I told you the 

disturbance is usually small. So, maybe it is enough if I just calculated the first term, 

because I would expect that the second term will not be that much important, because 

you look at this it involves lambda square. Suppose if lambda was identified with the 

electric field and electric field as I said is very small in comparison with the electric field 

that exists in the atom. 

So, therefore, this is a term that is linear in the electric field; this will be a term that will 

be a second order square of the electric field. So, you would expect that this correction to 

the energy will be much smaller than this correction, unless of course, you have a large 

electric fields, right. So, therefore, we would be happy if we can estimate this and 

perhaps that. In fact, you can derive expressions for those also, but we will not go into 

those expressions, right. So, what am I going to do? I want to determine these things, and 

of course, you see what do I have? I have the Schrodinger equation; this is the 

Schrodinger equation that I have of course, this is the term independent Schrodinger 



equation. So, let me write that equation once more; I know that H lambda is given by this 

expression.  
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So, therefore, I am going to say I would H 0 plus lambda times H 1 operating upon psi n, 

where is psi n? Psi n is sitting here, and psi n lambda I am going to write as psi n 0 plus 

lambda times psi n 1, etcetera is equal to. So, this is what happens to the equation. Now 

even though you would not have realized it; I have made a very strong assumption in 

whatever I have done. Let me tell you what that assumption is. This says that if I put 

lambda is equal to 0 my perturbed wave function actually will become equal to psi n 0; 

that is what it assumes. This is true in general provided your energy level is non 

degenerate, okay. If your energy level is degenerate let us say it is doubly degenerates 

then when lambda is equal to 0 you see I mean you do not have a unique state, because 

there are two states there, right. So, what would this be? Can I think of a unique state or 

may be it can be a linear combination of the two states that are already there. 

It may be the first state, it may be the second state, or perhaps it may be a combination of 

the two; I do not know. So, this expansion actually assumes that I know uniquely what 

this psi n 0 is, and that I can do only if my energy level is non-degenerate, and therefore, 

whatever I am actually developing is applicable only for non-degenerate levels; it is not 

applicable for degenerate levels. Actually strictly speaking I should make a discussion of 

degenerate levels, but I am not planning to do that, because we will discuss the other 



method which is referred to as the variation method and it is fairly straight forward to 

make use of that method even for cases where we have degeneracy; that is absolutely no 

problem. So, whatever I am doing is valid for a non-degenerate level; this actually means 

that if you are thinking of the harmonic oscillator then things are fine, because for the 

harmonic oscillator everything is non-degenerate. 

If you think of the particle in a box also everything is fine, because they are all the 

allowed energy levels of the particle in a box are non-degenerates, but if you think of the 

hydrogen atom then you have to be careful the theory that I am developing. It will be 

definitely applicable for the ground state, because ground state is non-degenerate; it is 

the 1 s stage, but if you are going to apply if you want to apply perturbation theory to the 

other states then you have to be careful, okay. Now what I want to do is so therefore, I 

have already told you that this equation is constrained in that psi n or this energy level E 

n 0 is assumed to have only one stage; it is non-degenerates. Now what I am going to do 

is you see I know that this equation the left hand side should be equal to the right hand 

side for any value of lambda. If you look at this you have a power series in lambda 

actually; you can say okay, remove this equal sign and make it negative, and then what 

will happen this has to be equal to 0. 

So, if you look at this it is a power series in lambda and the power series has to be 

identically equal to 0 for all values of lambda starting from 0 to some value. And if that 

is to happen what is the condition? We already know what the condition is you can think 

of it as a power series in lambda, the coefficient of each power of lambda should be 

equal to zero. So, let us do that. The other thing that you should remember is that these 

are all there are operators. So, therefore, I mean I have forgotten to put the hat sign, right; 

so better that I put the hat sign. So, what is the coefficient of lambda to the power of 0? 

From here you are going to get, right, this into that is going to be giving me a term that 

does not depend upon lambda. So, H 0 operating upon psi n 0 is one term, and from here 

you see this; this is occurring with the negative sign, because I should not forget the 

negative sign; let me put it here. 

So, this into that is going to give me a term that is independent of lambda. So, therefore, 

the first term will be H 0 psi n 0 minus E n 0 psi n 0. This is the coefficient of lambda to 

the power of 0, the term independent of lambda and then I would have a term that is 

linear in lambda; what is that? H 0 operating upon this one; remember lambda has no 



position dependence; lambda is like your electric field which is the same everywhere. So, 

therefore, H 0 operating up on lambda, lambda is unaffected, right; it is just a number. 

So, it is unaffected by H 0. So, what you are going to get is H 0 operating upon psi n 1, is 

that all? No, because there is a lambda here that lambda has an H 1 and that can go and 

operate up on psi n 0. So, this lambda is there, and I have already taken into account of 

lambda because I put a lambda outside minus what will happen? You will have E n 0 

multiplying that, and then you will have this term multiplying that. 

So, that is going to be minus E n 1 psi n 0. I will continue in my next lecture; what I shall 

do then is to write the term that depends upon lambda square, and then you will have 

lambda cube, etcetera, perhaps the series actually continues, and everything together is 

equal to 0. But because this is a power series in lambda which is identically equal to 0 

what will happen is that the coefficient of each power of lambda must be 0. So, therefore, 

I will have many many equations to work with. So, we have this power series, and do we 

say that the power series has to be equal to 0; I will just fill in the coefficient of lambda 

square. It is not actually very difficult to write it down, because you see if you look at the 

one that corresponds to lambda. If you look at this coefficient you will see that the sum 

of this 0 and that one; if you just added these two up answer is 1, if you added these two 

answer is 1, those two add 1, add those to 1. 

So, naturally if you add a lambda square what you would expect is that if you added 

those things you should get through that is all. So, remembering that you can easily write 

down. So, x 0 psi n 2 plus H 1 psi n 1; there is no H 2 that you have to remember H with 

superscript 2 is not there, because this is the perturbation minus E n 0 psi n 2 minus E n 1 

psi n 1 minus E n 2 psi n 0. This will be the coefficient of lambda square. Similarly if 

you wanted to write the coefficient of lambda to the power of 3 or 4 it is not difficult, 

easily you can write it. But anyway we are not going to be worried about the higher 

terms involving lambda square or lambda cube; we will only be interested in these two 

equations, why? Because I am interested in first order correction to energy and first order 

correction to the wave function, right. So, let us look at these two equations what do they 

tell us? It tells me that this must be equal to 0. That is the first thing. 
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So, what is that equation? Equation says that H 0 psi n 0 must be equal to E n 0 psi n 0, 

but this we already know; I mean this equation satisfies, because this is just the 

unperturbed Schrodinger equation, Schrodinger equation corresponding to the 

unperturbed Hamiltonian. So, nothing new; this we already know. Well, if you look at 

the second equation; what is the second equation? It is the coefficient of lambda, what 

are you going to get? You are going to get H 0 psi n 1 plus H 1 psi n 0 minus E n 0; this 

is what the equation says, right. I hope I have not made any mistakes on the superscripts. 

Now among in this equation what is going to happen is that I actually know what psi n 0 

is. Pi n 0 is I i know because I have solved the Schrodinger equation for the unperturbed 

problem; I also know, what are the other things that I know? I know this one, I know this 

term; yeah, that is all that I know, right, but I do not know E n 1. 

So, what I will do is I will take the terms that involves psi n 0 to the right hand side. So, I 

would have H 0 psi n 1 minus E n 0 psi n 1 is equal to something; what is that 

something? Well, you please check this; what have I done? I have retained this term as 

well as that term in the left hand side and removed the other terms and put them on the 

right hand side, correct. Now I want to find out E n 1 for example. Now it seems 

difficult, but actually it is very easy with this equation. All that you need to do is you 

multiply form the left hand side with psi n 0 star; this is known to us, psi n 0 is known to 

us. So, therefore, I can multiply throughout by psi n 0 star, maybe I will write the terms 



separately psi n 1 d tau, that will be the first term minus E n 1 E n; sorry not E n 1 but E 

n 0, remember E n 0 is a constant. So, it is unaffected by the integral sign. 

So, you will get integral d tau psi n 0 psi n 1 with a star here that will be the second term; 

what happens to the right hand side? I would have E n 1 integral psi n 0 star psi n 0 d tau 

minus integral d tau psi n 0 star H 1 psi n 0; it does look messy, but it is actually fairly 

simple to evaluate this because I know that this term, how much is this term? See these 

are functions Eigen functions, they are all; oh, no no, that I do not know. This is the one 

that I was talking about this object I know psi n 0 multiplied by psi n 0 star integrated 

over the entire space. Answer is unity, because the function is normalized. So, let me just 

removed that. So, this is actually unity; this whole thing is equal to unity, and now if you 

look at this expression, what is it that I have? I am going to look at this expression, 

where do I write? Maybe I can remove these things.  
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The integral that I have is integral d tau psi n 0 star H 0 psi n 1; this is the object that I 

have, but I know that H 0 is a Hermitian operator. So, I can make use of the properties of 

the Hermitian operator. So, how will I make use of the properties of a Herimtian 

operator? It is actually equal to d tau. You can allow H 0 to operate upon psi n 0 instead 

of it operating up on psi n 1, and you can put psi n 1 star on the other side, and from the 

properties of the Hermitian operator I know that these two have to be complex conjugate. 

So, therefore, properties of the Hermitian operator imply that this has to be valid, and 



that is actually very nice because see here H 0 was operating up on psi n 1, but there H 0 

is operating up on psi n 0, and this is an Eigen function of H 0. 

So, what will be the answer? You will have integral d tau psi n 1 star E n 0 will be the 

answer of this operating upon psi n 0 multiplied of course by psi n 0; that is what it is, 

correct, and I can take the star i operation inside, what is going to happen? E n 0 is an 

Eigen value, Eigen values of Hermitian operators they are real. So, this starring will have 

no effect on this. I can take it out, because it is just like a real constant. Then I would 

have integral d tau, again take this star inside. So, you will have psi n 1 multiplied by psi 

n 0 star, correct. So, we have evaluated this, evaluated this and found that it is equal to 

that. 

And if you look at this equation you would realize that this we have evaluated and we 

have found that it is exactly equal to; look at that and you look at this you will see that 

they are the same. So, therefore, this and that are actually equal and therefore, they will 

cancel each other, right, and hence what is it that I have left with? I have left with 0 equal 

to E n 1, right. This is actually equal to 1; this term we have said it is equal to 1 minus 

integral d tau psi n 0 H 1 psi n 0 with a star of course. Well, I will rewrite that equation; I 

mean write that equation once more so that the idea is very clear. There is a 0 here. So, I 

will take E n, I will take this to the other side; I mean I can write it as an equality sign. 
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What do I find? I find E n 1 is equal to how much? Integral of d tau psi n 0 star H 1 psi n 

0; now what is our first order correction to energy? First order correction to energy 

strictly speaking is lambda times that. So, what will happen? I will have to put that 

lambda back, and I will get this. So, this is my first order correction to the energy, fine. 

Now what does it say? You look at the physical content; whenever you have an equation 

you should be looking at the physical content and understanding that. What it says is 

here is your perturbation, and what is it that you have here? The unperturbed Eigen 

functions, right. 

So, if you wanted to calculate the first order correction to the energy of the nth stage, 

what you should do is you should take the perturbing Hamiltonian calculate its 

expectation value using the unperturbed wave function; that is all very simple. You know 

the unperturbed wave function, you know what the perturbation is, and therefore, you 

can easily calculate this. It is not difficult at all.  

Thank you for listening.  


