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Hello all welcome to the fourth lecture on Raman spectroscopy in the last lecture we have 

discussed rotational Raman spectroscopy and during the end of our discussion we mentioned that 

Centro symmetric molecules. For example hydrogen or oxygen the effect of nuclear spins will be 

observed. So, for these molecules will observe the effect of nuclear spin, in today's lecture we 

will look into the effect of nuclear spin on the rotational Raman spectrum for molecules 

containing a center of symmetry. 

 

It has been observed that limited numbers of rotational states are observed experimentally or in 

some cases we will see an alternation of the intensities in the rotational Raman spectrum. These 

observations can be explained using the nuclear spin effect. So, nuclear spin effect can explain 



these kind of observations in the rotational Raman spectrum. So, we have to understand how 

does this nuclear spin affect the rotational Raman spectrum. 
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So, the total wave function Psi can be represented as a first approximation as psi electronic times 

psi nuclear and as we have discussed before this is Born Oppenheimer approximation. So, for 

molecules with the axial component of total electronic angular momentum equals 0 the psi 

electronic is symmetric with respect to the interchange of identical particles. So, it is symmetric 

with respect to inter change of identical particles or we can say it is symmetric with respect to the 

reflection at the center. 

 

And this psi nuclear can be written as psi nuclear equals psi translational times psi rotational 

times psi vibrational times psi nuclear spin. Now the psi translational is symmetric with respect 

to reflection at the center and psi vibrational is also symmetric because we should remember that 

for rotational transitions we mainly consider V equals 0 that is the ground vibrational state which 

is symmetric with respect to the reflection at the center. 

 

But this psi rotational so we can write psi rotational is symmetric for even J values and psi 

rotational is anti-symmetric for odd J values so here we will write odd J values. So, in other 

words high rotational will be symmetric for J equals 0, 2, 4 etcetera. On the other hand psi 

rotational is anti-symmetric for J equals 1, 3, 5 etcetera. Similarly shiny nuclear spin can also be 



symmetric or anti-symmetric. So, this can be symmetric or anti symmetry for a 2 spin system 

with nuclear spin I equal half. 
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So let us say we have a 2 spin system where the nuclear spin which is denoted by I equals 1/2 

and an example of this is the hydrogen molecule. Because in hydrogen the I for each proton 

equals 1/2 space quantization of nuclear spin angular momentum results in the quantum number 

M I. So, we have a quantum number that is M I and M I can take in this case values of plus 1/2 

or -1/2 the nuclear spin wave function is usually written as alpha or beta. So, this is the nuclear 

spin wave function or psi nuclear spin. 

 

So this is written as either alpha or beta so alpha corresponds to M I equals + 1/2 and beta 

corresponds to M I equals -1/2 and so we have hydrogen molecule so there are 2 hydrogen atoms 

and let us say we label the nuclei as 1 and 2. So, these nuclei labeled 1 and 2 can either have an 

alpha or a beta spin wave function so there are 4 possible forms of psi nuclear spin. So, psi 

nuclear spin has 4 possible forms. So, what are these forms we can write this as alpha 1 alpha 2 

so where alpha 1 and 2 are the 2 nuclei. 

 

We can also write as beta 1 beta 2 and the other 2 possibilities are alpha 1 beta 2 and beta 1 alpha 

2. So, we can see that the first 2 alpha 1 alpha 2 and beta 1 beta 2 are clearly symmetric because 

if we interchange the labels 1and 2 then still it remains alpha 1 alpha 2 beta 1 beta 2. On the 



other hand the last 2 that is alpha 1 beta 2 and beta 1 alpha 2 and neither symmetric nor anti 

symmetry and for this we have to take linear combinations of this alpha 1 beta 2 and beta 1 alpha 

2 and also normalize them. 

 

So the 4 spin states that are possible for this nuclear spin are we can write the first were the same 

alpha 1 alpha 2 then we have beta 1 beta 2 and then we have these linear combinations where it 

is 1 by root 2 alpha 1 beta 2 +s beta 1 alpha 2 this is one linear combination. The other linear 

combination is by root 2 alpha 1 beta 2 - beta 1 alpha 2. So, this 1 by root 2 is the normalization 

constant. So, as we can see now the first 3 alpha 1 alpha 2 beta 1 beta 2 and this linear 

combination which is a positive combination are symmetric with respect to interchange of 

particles. 

 

So, these 3 are symmetry however the last one as we can see if you change alpha and beta that 

means if you change 1 and 2 then it is not symmetric on the other hand it is anti symmetric with 

respect to interchange of particles. Thus in this case the number of symmetric states is 3 while 

the number of anti symmetric states equals 1. Thus for hydrogen the symmetry properties of the 

nuclear wave function depends on the symmetry properties of the rotational wave function and 

the nuclear spin wave function. 

 

It follows from the indistinguishability of the identical particles that the total wave function is 

symmetric in bosons that means if bosons are particles with integral spin. So, bosons are 

particles with integral spin and if these bosons are interchanged then the wave function should be 

symmetry. On the other hand the wave function will be anti symmetric if fermions. So, fermions 

are particles with half integral spins. 

 

So if fermions are interchanged the total wave function must be anti symmetry. So, as we can see 

the nuclear spin I for hydrogen is half in other words hydrogen is a fermions. Thus for hydrogen 

the nuclear wave function must be anti symmetry and we can show this schematically as follows. 

So let us draw the J levels, so let us say we have J equals 0 J equals 1 J equals 2 and J equals 3. 

So, we know that J equals 0 is symmetric equals 1 is anti-symmetric and J equals 2 again is 

symmetric and J equals 3 is anti-symmetric. 



 

And so here we are talking about the rotational levels and now if we talk about the nuclear spin 

states on the right and if we denote the degeneracy of the spin States in bracket we will see or 

first of all we know that the I nuclear which is anti-symmetric in the case of hydrogen is given by 

psi rotational times psi nuclear spin. So, in this case we can write this; this should be anti 

symmetric because a symmetric time anti-symmetric gives the psi nuclear to be anti symmetry. 

 

Similarly because the rotational level is anti-symmetric for J equals 1 we should have the nuclear 

spin state as symmetric this will be anti symmetric and J equals 3 will again be symmetry and the 

degeneracy as we found from here the degeneracy of symmetric is 3 and the degeneracy of anti-

symmetric is 1. So, we will write 1 whenever we write anti-symmetric in bracket and 3 for the 

symmetric we should write in bracket. So, now what we see here is if we take symmetric times 

anti symmetric it is anti-symmetric, anti-symmetric time symmetry is also anti-symmetric. 

 

So the psi nuclear in this way will be anti symmetric because hydrogen is a fermion. So, the 

rotational transition from J equals 1 to 3 because Delta J should be +- 2 or a transition from 3 to 

5 will be 3 times more intense than the transitions from 0 to 2 or 2 to 4 etcetera thus there will be 

an alternation of intensities in the ratio 1 is to 3 in the rotational Raman spectrum of hydrogen 

and the gap between the successive lines in the rotational Raman spectrum will be as we know 

4B. 

 

So, we know that hydrogen can exist in ortho and para form. The para hydrogen can exist only in 

the even J states. So, we can write this as para and J equals 2 as para and the ortho hydrogen can 

exist only in odd J states so J equals 1 is ortho J equals 3 is ortho so at temperatures at which 

there is appreciable population up to fairly high values of J that means J equals 0 1 2 3 all are 

kind of populated there is roughly 3 times as much ortho as there is para hydrogen. 

 

However at very, very low temperature at which the population of all rotational levels other than 

J equals 0 is small that means mostly J equals 0 is populated then hydrogen is mostly in the para 

form. 
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Similarly will be a case for a symmetrical linear polyatomic molecule for example let us say we 

have acetylene HC triple bond C single bond H since I equals 0 for 12C. So, we should only 

consider the 2 hydrogen's at the 2 but the main difference is that since the rotational energy 

levels are much more closely spaced in acetylene as compared to hydrogen a much lower 

temperature is necessary to produce acetylene predominantly in the para form. So, now let us 

look into another homonuclear diatomic molecule that is nitrogen and for nitrogen I equals 1. 

 

The total number of states for each nitrogen nucleus is given by 2 I + 1 so because I equals 1 this 

is 2 times 1 + 1 that is 3 and for nitrogen molecule the total number of spin states equals 3 

squared that is 3 times 3 equals 9. So, this is total number of spin States for nitrogen so out of 

this 9 spin states 6 will be symmetric and three will be anti symmetry. So, the symmetric will be 

6 and anti-symmetric will be 3. So, in general if the spin is I then the total number of symmetric 

states is given by 2 I + 1 times I + 1. 

 

So in case of nitrogen we can see we get 2 times 1 + 1 times 1+ 1 so this becomes 3 times 2 

equals 6 and that is why we wrote 6 here. On the other hand the total number of anti-symmetric 

states is given by 2 I + 1 times I, so in case of nitrogen this is 2 times 1 + 1 times 1 that is 3 times 

1 that is 3, so we wrote 3 here. Does the symmetric and the anti-symmetric states will be in the 

ratio 6 is to 3 for nitrogen thus for nitrogen the rotational transitions can be shown as again we 

can draw this energy level diagram. 



 

Let us say we have the rotational levels on the left and we have this nuclear spin states on the 

right and again we will write degeneracy in bracket. So, let us draw the energy level diagram we 

have J equals 0 J equals 1 J equals 2 and J equals 3 and because Delta J equals +- 2 we have 

transitions from J equals 0 to J equals 2 and J equals 1 to J equals 3. And as we all know so J 

equals 0 is symmetric J equals 2 is symmetric on the other hand J equals 1 is anti-symmetric and 

J equals 3 anti-symmetric.  

 

Now the psi nuclear in this case is symmetric because I is an integer that is 1. So, in other words 

this is an example of a boson. So, because the shiny nuclear is symmetric from the previous 

example of hydrogen now we can say that the nuclear spin state here corresponding to J equals 0 

should be symmetric. And as we know it has a degeneracy of 6. Now here it should be anti 

symmetric with degeneracy of 3 again it is symmetric with degeneracy 6 and anti-symmetric 

with degeneracy 3 and this is because we write psi nuclear which is symmetric as the product of 

psi rotational and psi nuclear spin. 

 

So the rotational Raman transitions will show an alternation of intensities in the ratio 6 is to 3 or 

we can simplify this as 2 is to 1 and again because all the lines are there and no line is missing 

the gap between successive lines will be equal to 4B.  
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So, now let us look into another molecule and this molecule is oxygen and for oxygen we have I 

equals 0. So, let me first draw the energy level diagram so let us draw the energy level diagram 

equals 0 J equals 1 J equals to J equals 3 J equals 4 J equals 5 and we know because these are 

rotational levels are additional wave functions this is symmetric, anti symmetric, symmetric, anti 

symmetric, symmetric, anti symmetry.  

 

So, again here we have the rotational levels and on the right we will have the nuclear spin states 

and in bracket will write the degeneracy. So, since each 16 oxygen nucleus that is oxygen 16, so 

each of this oxygen 16 nucleus is a boson the total wave function must be symmetric to nuclear 

exchange. In the case of oxygen the 2 electrons with unpaired spin in the ground state so this 

makes the psi electronic there is a psi electronic to be symmetry. 

 

And this is unlike the other molecules like hydrogen or nitrogen we have considered. So, the 16 

oxygen will only have levels with rotational quantum numbers having odd values this is because 

now this total nuclear wave function has to be anti symmetric because the psi electronic is anti 

symmetry and so because this psi nuclear is the product of psi rotational and psi nuclear spin. So, 

here nuclear spin should be anti-symmetric for J equals 0 symmetric, anti symmetric, symmetric 

and anti symmetric and symmetry. 

 

And as we know the number of anti symmetric states is given by 2 I + 1 times I and because I 

equals 0 the number of anti symmetric states equals 0. So, the degeneracy becomes 0 for even J 

values. And for the odd J values we have symmetric and the symmetric is given by 2 I + 1 times 

I + 1 so that is 1 times 1 that is 1 so the degeneracy here is 1. So, in other words in the rotational 

spectrum the rotational states for even J values are actually missing. 

 

Because the degeneracy is 0 that means the number of states for the anti-symmetric is 0. So, 

these states will be missing from the spectrum and the only allowed transitions that we would 

have is from 1 to 3 or from 3 to 5. So, now because the alternate lines are missing in this case the 

gap between the successive lines will not be 4B but it will be double of that that is the gap 

between successive lines will be 8B. 

 


