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In the last couple of lectures, we have looked at the postulates of quantum mechanics. Let us 

now look at a simple quantum model system, which can help us make those ideas a little 

more concrete. This model system is called the particle in a 1-D box system or the particle in 

an infinite square well, besides being a very simple model for us to understand the postulates; 

we will see that this model is actually applicable in certain cases to explain electronic 

spectroscopy. 

 

So, we will come back to this later in the class when we are going to discuss electronic 

spectroscopy. Let us know look at this model. In this model we consider that the particle can 

move in only 1 spatial dimension let us say the x direction further the particle is confined to a 

certain region of this x axis. So you can imagine that there are hard walls like this. And as 

long as the particle is within x = 0 and x = a, the potential energy of the particle = 0. 

 



However, if it goes < x = 0, then the potential energy becomes infinity. And similarly if it 

goes to x > a, then the potential energy becomes infinity, we can write the potential energy in 

the following form. V of x = 0 when x is between 0 and a, and it is equal to infinity when x < 

0, or x > = a. See that the particle is confined in this region. And the question is, what is the 

nature of the wave functions of the system and how does the system or the wave function of 

the system evolve in time. 

 

You can imagine the system to be a particle moving along a rod like this. So, as long as the 

particle is confined into this region, its potential energy 0, but it cannot go out of this. So, the 

potential energy is infinite in regions outside this region that it can be. 
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So, let us examine how the solutions of this problem looks like. Here is the diagram of the 

potential energy which is V = 0 in this region V = infinity in these 2 regions. Now, if the 

potential energy is infinity, the particle cannot be there and the V function in those regions 

So, in this region it is 0 and also in this region it is 0. This would imply that because of 

continuity even further wave function in the region inside the box, this part here, point. 

 

This point here should have the value 0 and also this point here should have the value 0. This 

will ensure that the way function is continuous at these boundaries. So, we can write these 2 

boundary conditions as psi of 0 = 0 and psi of a = 0. Now, let us write the Hamiltonian of the 

system. So, the Hamiltonian which is denoted as H hat is equal to the kinetic energy operator 

+ the potential energy operated now in the region 0 to a, the potential energy is 0 and let us 

write the Hamiltonian in this region. 



 

So, the Hamiltonian is simply the kinetic energy operator which is – h bar square / 2 m d 

square by d x square in the region 0 x < a let us know look at solving the Schrodinger 

equation with this the Schrodinger equation as you know is I h bar del psi by del t = H of psi 

and because in this case the Hamiltonian does not depend on time. We have seen that solving 

the Schrodinger equation here becomes equivalent to solving the eigenvalue equation of the 

Hamiltonian H psi = E psi. So we are going to solve the eigenvalue equation of the 

Hamiltonian.  
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In this case, we have written here, the eigenvalue equation of the Hamiltonian of the particle 

in a box. So let us see how the solutions of this equation look like. So let us rearrange this a 

little bit. So d square psi x by d x square = – 2 m eE by h bar square psi x. So we notice here 

that this is a second order differential equation and psi of x is some function, which when you 

differentiate twice, you get the same function back with a constant. 

 

We know that the solution of an equation like this is a sin function. cosine function, most 

general solution is something like this psi = A times sin of k x + B times cosine of k x. K here 

would be square root of 2 m E / h bar square or square root of 2 m E / h bar. Now if you 

substitute this into the eigenvalue equation here, you can verify that this indeed a solution. 

Now there are certain conditions on the psi that we have specified before, which is that psi at 

x = 0 and psi at x = a = 0.  

 



So let us apply the conditions psi of 0 = 0. This gives psi of 0 = A sin of 0 + B cosine of 0 = 

0. Now sin of 0 = 0, we know that and cosine of 0 = 1. So this implies that B = 0. Now, the 

solution has the form psi = A sin k x. Let us apply the second boundary condition, which is 

psi of a = 0. This implies that a sin k of a = 0. Now, sin of this part will be 0, when k of a is 

some integral multiple of pi.  

 

So it could be pi, 2 pi 3 pi and so on, and is equal to integers. K = n pi over a, if he substitute 

this value of k into the expression for the wave function then we get the valid wave function 

to be psi = A sin n pi x over a. And if we substitute this k into the expression for the energy 

which we have here, then we get n pi / a which is k = square root of 2 m E / h bar and E 

therefore becomes n square pi square h bar square divided by A square 2 m. Or if you use that 

h bars = h over 2 pi. Then we get energy = n square h square 8 m a square. 

 

So, this is the energy of the particle in a box and the corresponding eigenfunctions are these 

were n are integers. So, we see that the energy of the particle is now quantized not all values 

are allowed, but only values corresponding to this expression when enter integers and 

similarly the corresponding eigenfunctions are given here, which depends on what n is and n 

is usually called a quantum number. 

 

Now what integer values can intake it could be 1 2 3 and so on. Now, the question is 0 

allowed, if you substitute 0 into this expression, you will see that the wave function becomes 

simply psi = 0 so, that is not allowed what about negative integers? If you take n = – 1 for 

example, then you get psi = A sin – 1 pi x over a. And we see that is nothing but – of A times 

sin pi x over a. 

 

So it is essentially the eigenfunction corresponding to n = 1, multiplied by – 1. And so it does 

not really give us a new solution.  
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Let us know examine the form of the eigenfunctions of the particle in a box and the 

corresponding energies. So here is the particle in a box and the lowest energy corresponds to 

n = 1, which is E = E 1 = h square over 8 m a square. And if you put the energy level here 

know that we are not putting it at energy, this is the energy axis. And we are not putting the 

energy = 0, because even for the lowest quantum number n = 1, the energy has a finite value 

here, now the wave function corresponding to this is psi = a sin pi x over a.  

 

So, how does this function look, if you take a point x = 0 then the sin value is 0 here, if you 

take x = A then you get sin pi, which is the value here sin pi = also 0. And if you take x = a / 

2, in that case, you get sin pi / 2 which = 1 and if you do the other points, then you can see 

that the wave function looks like this. For n = 2, which we can draw here the energy is 4 8 

square / 8 m a square. And the wave function is psi = a sin. 2 pi x over a, which when we plot 

looks like this.  

 

And for n = 3, now the energy gap here between n = 2 and 3, this gap is more than the gap 

here. Because here now the energy E 3 = 9 h square / 8 m a square. And if you draw the wave 

function there, this eigenfunction is A sin 3 pi x over a which looks something like this.  
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Let us know examine the properties of this eigenfunctions. So, we have the eigenfunction to 

be psi of x = a sin n pi x over a. The question is what is A you will recall that one of the 

properties. That wave function needs to have psi star psi of the wave function integrated over 

all space needs to be 1 which is the normalization condition or the condition that the sum of 

probabilities of finding the particle at any position equal to 1.  

 

So, let us apply this condition for our wave function – infinity to infinity A star A sin square, 

n pi x over a = 1, or we can write this as mod of A square. And the limits go from 0 to a 

because in this case, the particles probability to be outside the box is 0. So the only place 

where the wave function has a non-zero value is between 0 and a. And so this becomes sin 

square, n pi x over a dx = 1 we know make a substitution to solve this integral. So let us 

substitute Z = n pi x over a. Therefore, d Z = n pi d x over a. 

 

And this integral now becomes A square 0 to when we substitute A here, this becomes n pi 

and this becomes sin square Z d Z. The whole thing multiplied by A over n pi. This integral 

should be = 1, this integral can be solved by using trigonometry identities, where we convert 

the sin square Z to cosine 2  Z and then integrate. Or you can think of the geometrically in the 

following way. 

 

So consider this to be the Z axis. And in that the sin square function looks something like this 

between 0 to pi here, and pi to 2 pi here. And the cosine square function is the 

complementary function, which looks like this. Now you notice that in a cycle, which is from 

0 to pi, or between pi to 2 pi, the area under the sin square curve, which is shown here is 



equal to the area under the cosine square curve, which I am showing now with a different 

type of marking. 

 

So the integral sin square Z d Z = integral cosine square Z d Z in an interval 0 to pi, or any 

other cycle from pi to another pi + 1. Furthermore, we know that sin square Z + cosine square 

Z is always = 1. So this function sin square Z + cosine square Z on an average has a value 1. 

So on an average both these functions sin square Z and cosine square Z have a value half and 

within the interval 0 to pi, their integral will become half times pi or pi / 2. 

 

This means the integral from 0 to n pi of sin square Z d Z = n pi / 2. If we substitute the value 

of this integral back here, then we get a over n pi a square n pi / 2 = 1. If he cancel the n pi 

here, then you see that A square = 2 over a and then one of the allowed values for a is square 

root 2 over a. If you plug this back into the expression of the wave function, the normalized. 

wave function becomes psi of x = square root 2 over a sin n pi x over a which is the final 

expression for the normalized eigenfunction of the particle box.  
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Let us know use this wave function to calculate some average properties, you will recall that 

the average property of some operator is given by the integral psi operator A psi this is 

written in Dirac notation and the integral would be psi star operator A on psi d tau over all 

space. So, let us do this for the position operator in our particular case. So, the average 

position is integral – infinity to infinity but this can be written as only 0 to a, because that is 

the only region whether wave function exists in all other regions.  

 



It is 0 and therefore, will not contribute to this integral. And the wave function is square root 

2 over a which I can right outside as 2 over a sin n pi x over a. And here is the operator which 

is x multiplied by the wave function again n pi x over a dx. And this is 2 over a 0 to a x sin 

square n pi x over a dx. Now, we can solve this integral by parts. And I will not do this in the 

interest of time, but if you work it out, you will see that the value of this integral is a square 

by 4.  

 

And then if you substitute into the expression, you get 2 over a multiplied by a square by 4 

and that = a over 2. So the average position of the particle is a over 2, which is the center of 

the box. This makes sense because the particle can be anywhere. And on an average, just by 

thinking about it in a symmetric manner, the particle should be on an average right in the 

middle of the box. Let us now consider the average momentum of the particle.  

 

So, average of P that = 2 over a 0 to a sin n pi x over a and the momentum operator is – i h 

bar d by dx sin n pi x over a dx. This is equal to 2 over a 0 to a sin n pi x over a – i h bar, and 

the differential of sin is cosine n pi x over a multiplied by n pi / a dx, which is 2 over a, 

multiplied by – i h bar n pi / a, and then 0 to a sin n / x over a cosine n pi x over a dx. And if 

you solve this integral here, you will find that the value of this is = 0. So the average 

momentum of the particle in a box is = 0. 

 

Now this again, Make sense, because the particle could be moving to the left or to the right. 

And on an average the momentum of the particle will be just 0 because momentum has a 

direction. So, the momentum values on the right will cancel those on the left and on an 

average the momentum will be 0.  
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Let us now look at the time dependence of the eigenfunctions of this system. So, we have 

seen that a general eigenfunction is given by psi n of x = square root of 2 over a sin n pi x 

over a. The time dependent function corresponding to this can be written as phi n x, t = psi n 

x multiplied by e to the power of – i e n t over h bar. So, if you write this out completely, this 

will be square root 2 over a sin n pi x over a and the sin part can be written as the real part 

cosine of e and t / h bar + i sin e n t / h bar. 

 

So, let us look at how the probability density of this wave function evolves in time. And we 

will also look at how the probability density of wave function which is a linear combination 

of two eigenfunctions evolves in time.  
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You see here, the wave function corresponding to the lowest eigenfunction of the particle in a 

box in particle, you see the time evolution of this wave function. The real part of this wave 

function is shown in blue, and the imaginary part is shown in red. As you can see, the real 

and imaginary parts complement each other, because one is the cosine function, and the other 

is the sin function. So, as cosine increases, the sin decreases, and that is what you see here, 

you can now see the second eigenfunction of the particle in a box, and it is time evolution. 

 

Interestingly, the probability density corresponding to both these way functions, which is 

shown in the bottom here, does not depend on time. Now, consider the situation where the 

wave function is a linear combination of the 2 eigenfunctions. In particle, it is an equal linear 

combination of the 2 eigenfunctions with 50% phi 1 and 50% phi 2. Now, you see that the 

probability density does depend on time. 

 

And this is consistent with what we have written down before about the time evolution that if 

a wave function is a linear combination of eigenfunctions it is not a stationary state in that 

case, the probability density does depend on time.  
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The particle box system besides being a simple model to understand quantum mechanics will 

also serve us as a model to explain electronic spectroscopy for certain classes of molecules. 

These are conjugated molecules like this, which have double bonds, so, double buta dyne like 

this or a conjugated molecule like this. When there is linear conjugation like this the pi 

electrons of the system, which are the outermost electrons feel a potential energy, which can 

be approximately drawn to be of this form. 



This is the energy axis here and this is the length of the molecule. So, this potential energy 

will be more like this in the case of a longer molecule and will have an even longer length in 

the case of the triply conjugated molecule. The potential energy of this shape implies that the 

electron is confined to this region and cannot leave. But of course, the walls of this potential 

energy are not infinite like in the particle box.  

 

Because from the molecule the electron can actually leave however, we will see that the 

particle in a box is a fairly good approximation to a potential like this. And we will see that 

based on its eigenvalues, we can explain or model the electronic absorption frequency. We 

will examine this further when we come to the section on electronic absorption spectroscopy. 


