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In this lecture, we will discuss the idea of normal mode coordinates. Normal mode coordinates 

are important in the context of understanding vibrational spectroscopy of polyatomic molecules. 

So this is important for polyatomic molecules were, let us say there are N atoms in the molecule 

in the case of diatomic molecules that is when there are just 2 atoms. We have seen in a previous 

lecture, that the vibrational motion of the 2 atoms is equivalent to the vibration of a single 

particle connected with a spring and performing simple harmonic motion.  

 

The particle in that case moves with a potential energy which is quadratic in the distance of the 

mass displaced from the equilibrium position when the spring is undisplaced. So, the form of the 

potential energy for simple harmonic motion is V of x is equal to half some constant times x 



square where x is the displacement from the equilibrium position. Let us now see what happens 

in the case of polyatomic molecules when there are N atoms.  

 

So, in this case the potential energy in general depends on the position of all N atoms. So, in 

other words, the potential energy V is a function of N coordinates. You may recall that in the 

case of a diatomic molecule, we showed that the motion of the 2 atoms can be decomposed into 

an overall translation of the molecule and additionally, the vibrational motion of a reduced mass. 

In a similar way, when we come to a polyatomic molecule with N atoms, using mathematics, we 

can show that the motion of these N atoms in the molecule can be decomposed into 3 motions.  

 

Which are purely associated with the center of mass moving in the x, y and z direction and 

similarly, 3 other motions which are associated with the molecule overall rotating along the x 

axis, y axis and z axis. And besides these 6 overall motions, there are 3N - 6 internal motions or 

vibrational motions. So, 3 translations, 3 rotations and 3N - 6 vibrational motions the potential 

energy V is therefore, a function of only 3N - 6 coordinates.  

 

Note that I have written that the potential energy is a function of N coordinates, but that should 

actually be the function of position of N atoms. And since each atom has an x y and z coordinate, 

this is a function of 3N coordinates. And then we just discussed that out of these 3N coordinates 

there are 3 translations, 3 rotations, and only 3N - 6, pure internal motions or vibrations. So the 

potential energy is a function of only the internal motions.  

 

Because if does in overall translation of the molecule or overall rotation of the molecule, the 

potential energy does not change, or an overall translation can be associated with the kinetic 

energy, but there is no change in the potential energy. The potential energy changes only when 

there is relative motion between the atoms of the molecule.  
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The potential energy of N atom molecule, which we have seen is a function of 3N - 6 coordinates 

can do a very good approximation be written as a sum of 3N - 6 one dimensional potential 

energies. By this, I mean this is approximately V 1 of only coordinate x 1 + V 2 of only 

coordinate x 2, and so on V 3N - 6 function of only coordinate x 3N - 6. The important point 

here is that, although the potential energy is actually a function of 3N - 6 coordinates.  

 

It is approximately a much simpler form, which is just a sum of 3N - 6 one dimensional 

functions. And this simplification of the potential energy happens in a specific set of coordinates, 

the specific set of coordinates in which the potential energy separates into this simple form are 

called the normal mode coordinates. So, this separation is true in normal mode coordinates. 

Moreover, it can be shown that the total energy of the polyatomic molecule.  

 

The kinetic and the potential energy can be written as a sum of total energies of one dimensional 

harmonic oscillator. And this can be done when the coordinates used other normal mode 

coordinates. So, I mean that the Hamiltonian which is a function of let us say q 1 q 2, q 3N - 6 

where these q 1 q 2 are the normal mode coordinates. This Hamiltonian becomes a sum of one 

dimensional Hamiltonians q1, H 1 of q 1, H 2 of q 2, and so on H 3N - 6 of q 3N – 6.  

 

Where each of these Hamiltonians are just one dimensional harmonic oscillator Hamiltonians 

with different frequencies we can denote these different frequencies by omega 1, omega 2, and 



so on up to omega 3N - 6, which are associated with the different one dimensional harmonic 

oscillator. Each of these one dimensional harmonic oscillators, in a normal mode coordinate has 

a specific frequency associated with it, and a very specific overall motion of all the atoms in the 

molecule.  

 

The total vibrational motion of the molecule is a combination of these different normal mode 

motions. So, a normal mode coordinate in general is a combination of motion of all the atoms in 

the molecule. We will notice that these motions can be associated sometimes with specific 

motions of a bond or specific bending of an angle and these are used to name or given 

nomenclature to the normal modes.  

 

Let us look at this with some examples, which will help us concretize the idea of normal modes 

in the case of polyatomic molecules. Let us start looking at some example of normal mode 

coordinates. And let us begin with a very simple example, which is of the triatomic molecule 

water. 
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So, this molecule has 3 atoms. So, N = 3 and there are 3N - 6 that is equal to 3 normal mode 

coordinates. We will look at how these 3 normal modes actually look like in the case of the water 

molecule. So, the first normal mode is what you see here. And you notice that the motion is 

primarily a stretch of the OH bond. So, the vibration is essentially the OH stretching and this 

vibration is symmetric about this axis.  



 

So the C 2 V symmetry of the water continues to remain during the vibration. And you see that 

the primary motion is the OH stretch like this. But you also notice that as the OH stretches and 

goes down, as the H goes down, the oxygen moves up. And this is because the center of mass 

does not move during the vibration. This normal mode is called the symmetric stretch normal 

mode of water. 

 

Let us look at another normal mode of water. And that looks like this. And here you notice that 

the primary motion is a bending of the HOH molecule. In other words, this angle HOH keeps on 

changing. And again, you will notice that as the hydrogen moves up, the oxygen begins to move 

down to conserve the center of mass. This motion is the bending motion. And it is a symmetric 

bend because the C 2 V symmetry of the water molecule continues to be conserved as the 

molecule bends in this fashion.  

 

The third normal mode of water can be seen here. And here you notice that the motion can be 

classified as primarily a stretch. So here the hydrogen and oxygen bond in one case is increasing. 

And when that is happening, the other one is decreasing. And the oxygen is moving in such a 

way that the center of mass is again conserved. Now, this motion does not conserve the 

symmetry of the water molecule.  

 

It is a stretching motion, which does not conserve the symmetry. And so this is called an 

asymmetric stretch normal mode of the water. So this is a asymmetric stretch. So the points to 

note are that the normal mode coordinates involve the motion of all the atoms and the atoms 

move in such a way that the center of mass does not move, and there is no overall rotation and in 

these various, specific coordinates the overall Hamiltonian of the molecule.  

 

And in particular the Hamiltonian associated with the internal motion of the atoms of the 

molecule separate into one dimension harmonic oscillator Hamiltonians each of these one 

dimensional harmonic oscillator Hamiltonians are functions of the normal mode coordinates and 

overall motion of the molecule in this case of water can be decomposed into a sum of these 3 



motions. And therefore, the water molecule will absorb radiation which will excite these 3 

motions.  

 

And because the vibrational levels are quantized the frequency of absorption will correspond to 

the frequency of motion corresponding to these 3 normal mode motions. Another thing to note is 

that the frequency of these motions is, in principle all different although they might appear the 

same in this animation that is simply because it has been animated that way. But the frequency of 

motion of the stretches are actually higher typically then of the bends.  

 

So in this particular case of the water molecule, the symmetric stretch has a frequency of about 

3700 wave numbers. And the asymmetric stretch also has a frequency of about 3700 wave 

numbers. The asymmetric stretch typically has a little higher frequency than the symmetric 

stretch, but I have just given you an approximate idea of what the frequency is here. The bend 

has a much lower frequency and is of the order of 1600 wave numbers.  

 

This is indicative of the fact that the bend is a floppier motion associated with a spring which has 

a smaller spring constant and therefore, also a smaller frequency. Let us now look at one specific 

normal mode of a more complicated molecule. And in particular, we will look at a few carbonyl 

molecules, which are different, but the common thing in all of them is they all have a carbonyl or 

a CO bond. Each of these molecules as we have discussed has 3N - 6 normal mode coordinates 

and out of these 3N - 6 coordinates, there is one coordinate in which the carbonyl motion is the 

most significant motion of all the other motions. 
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So, let us look at that and this particular normal mode, we call as the carbonyl stretch normal 

mode. So, what we see here is the acetone molecule. And although all the atoms are moving in 

this normal mode coordinate, the most important or the most significant or the most prominent 

motion is that of the carbonyl stretch, which is the CO bond stretching and then contracting 

accompanying that is of course, motion of the other atoms the carbon and the hydrogen.  

 

But primarily this is the CO stretch and that is why this normal mode is referred to as the 

carbonyl stretch normal mode. This normal mode associated with carbonyl stretching has a 

typical frequency it is around 16 to 1700 wave numbers. Now the point is that if we look at 

another carbonyl molecule other than acetone, so let us do that. And here we have acetamide 

which is amide with a carbonyl and a CN bond.  

 

And now you see that this is also the carbonyl stretch normal mode. But here the normal mode is 

not quite the same as the acetone normal mode. The similarity is that most significant motion is 

still the carbonyl stretch. But the difference between the normal modes in these 2 molecules is 

that apart from the carbonyl stretch, there are different atoms which are moving to different 

extents. So acetamide carbon carbonyl stretch is different from the acetone carbonyl Stretch.  

 

The frequencies associated with these are about similar, but clearly the normal mode is not just 

the carbonyl stretch and that is important points that although we refer to this as the carbonyl 



stretch normal mode, there are other motions also involved. And that depends very much on the 

exact molecule in question. So, if we look at another example, and here we look at an acid there 

you have a CO carbonyl bond and a COH. 

 

So, this is a carboxylic acid. The carbonyl stretch is again the predominant motion in this 

particular normal mode. But then there are other motions also. And that constitutes the carbonyl 

stretch normal mode in this molecule. And if you take yet another angle Example, where we 

have an ester there again you have the carbonyl stretch as the major motion, which helps us call 

this normal mode as carbon stretch. But there are other motions also.  

 

So to summarize, the normal mode coordinates are very specific coordinates. They involve the 

motion of all atoms of the molecule. And they are special because in those coordinates, the 

Hamiltonian of the molecule or the Hamiltonian associated with the internal motion of the atoms 

of the molecules separate into a sum of one dimensional harmonic oscillators. So, the 

Hamiltonian which is a function of 3N - 6 coordinates becomes a sum of 3N - 6 one dimensional 

harmonic oscillator Hamiltonians.  

 

That helps us Simplify the solution of this problem quantum mechanically. But moreover, it also 

helps us interpret vibration spectra. Because the frequencies associated with excitation are the 

frequencies of these different 3N - 6 oscillators, written in the normal mode coordinates. The 

signatures of the harmonic oscillator frequencies are what we see in a vibrational spectrum of a 

polyatomic molecule. 


