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Hello everyone, in the last lecture, we discussed anharmonicity and how does anharmonicity 

affect vibrational energy levels the energy of an anharmonic vibrator associated to the vibrational 

quantum number v is given by nu bar v = v plus half nu bar e - v plus half, whole square nu bar e 

chi e here this chi e is the anharmonicity constant as anharmonicity is a part of vision to the 

harmonic system, let us revisit the Taylor series expansion of the potential V of r. 

 

So we will revisit the Taylor series of V of r, so we can write the Taylor series expansion as V of 

r = v at equilibrium bond length, plus dv / dr at r equilibrium r - r equilibrium + 1 / 2 d 2 v dr 2 at 

r equilibrium, r - r equilibrium square + 1 / 6 d 3 v dr 3 at r equilibrium r - r equilibrium cubed 

and the other higher terms. So for the harmonic oscillator solution, we considered up to the 

second order term. 



That means we have only considered up to this much. However, we know that anharmonicity 

affects the shape of the potential at distances away from the equilibrium bond length. Now, let us 

look into the differences in the shapes in the anharmonic and the harmonic potential again. So let 

us say this is our harmonic potential and here is our anharmonic potential. So the anharmonic 

potential is steeper at r less than r equilibrium and shallower at r greater than r equilibrium. 

 

So although the Morse oscillator is quite useful in practice, a more general expression is nu bar v 

= v plus half nu bar e - v plus half nu bar e chi e this is square term v plus half cubed nu bar e y e 

+ dot dot. So, here this y e like chi e is also an empirical dimensionless constant characteristic of 

the molecule these constants are used to fit the experimental data and to find the dissociation 

energy of the molecules. So, we can think of the perturbation to the harmonic potential as 

considering one mole higher order that is third order term in the Taylor series expansion. 

 

So, if you look into this third order term that is 1 / 6 d 3 v dr 3 at r equilibrium r - r equilibrium 

cubed, we can see that if this third derivative is negative then V of r will be steeper for r less than 

r equilibrium, this is because if this third derivative is negative and we have r less than, less than 

r equilibrium, then this cube term is also negative. So that means if you take this product, this 

product becomes positive. What does this means that for some value of r we are plotting that V 

of r in the y axis. 

 

That means for the same value of r, the V of r will have a larger value. This means that at r less 

than r equilibrium, the potential will be steeper. On the other hand, for r greater than, greater than 

r equilibrium, then this r - r equilibrium term will be positive. So the product will now be 

negative because we have a negative term that is the third derivative and we are multiplying with 

a positive term. So the product is negative. So this means for the same value of r now this V of r 

will have a smaller value that means this potential will be shallower at r greater than r 

equilibrium. So, let us now look into the effect of unharmonious city on the selection rules. 
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So, because the energy levels are getting closer and closer together, the specific selection rule, 

which is given by delta v = + - 1 breaks down. This means we can have transitions from v = 0 to 

v = 2 or we can have transitions from v = 0 to v = 3. In other words, these transitions become 

allowed. However, the transitions were delta v is greater than + - 1 are very much weaker than 

the fundamental transition the bands in the IR spectrum arising from delta v, that is greater than 

+ - 1 are known as overtones. 

 

So all these bands are known as overtones, the way to think about is that anharmonicity is a 

small perturbation to the harmonic problem. The harmonic problem has a selection rule that delta 

v = + - 1, the selection rule gets broken down because of the small perturbation, but because this 

is a small perturbation, this means that the intensities of anything that breaks the harmonic rule 

are much weaker. We refer to transitions that break the selection rules as normally as for bidden 

transitions. 

 

So you can ask if they are forbidden. Why do they occur? This is because that the assumptions 

about these transitions do not really hold in the real world. The harmonic oscillator 

approximation does not really hold in the real world because the molecules are anharmonic. We 

call them forbidden, because they break the ideal model. But whenever there is a forbidden 

transition, the intensities associated with the forbidden transitions are very much week. 

 



The anharmonicity, as discussed in the last lecture, also shifts the energy levels. The energy 

levels get closer and closer as the dissociative limit is approached. For anharmonic oscillator, this 

delta v modulus is greater than 1, what the intensities of these transitions where delta v is greater 

than 1 is very much smaller, as we have just mentioned and can be obtained by solving the 

transition moment integral. 

 

In other words, we will get transitions, we will get more transitions than a single peak, for 

example, from v = 0 to v = 2 from v = 0 to v = 3 other than from v = 0 to v = 1, the frequency of 

the first overtone that is, v = 0 to v = 2. So, this is the first overtone. So, this frequency will be 

approximately twice the fundamental frequency that is the energy gap between v = 0 to v = 1. 

However, it is not exactly twice the frequency as the energy levels come closer with increase the 

value of v in anharmonic oscillator. 

 

The overtone frequency will be slightly smaller than the double of the fundamental frequency. 

So, now, let us try to visualize these transitions. So, as you can see, we have this v = 0 v = 1 v = 

2 v = 3. So, we are plotting V of r here and we see the transition from v = 0 to v = 1 is the 

fundamental band from v = 0 to v = 2 is the first overtone and from v = 0 to v = 3 is the second 

overtone. 
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So, if we now use the anharmonic energy expression that is nu bar e = v plus half nu bar, so, this 

is nu bar v, so nu bar e here - v plus half square nu bar e chi e the energy difference 



corresponding to the first overtone, we can find out. So, because the first overtone is from v = 0 

to v = 2, so the energy difference that is the delta nu bar for the first over tone will be the nu bar 

for v + 2 and we have to subtract nu bar of v from nu bar of v + 2. So, now let us right so, nu bar 

of v + 2 we can write as v + 2 plus half nu bar e - v + 2 plus half square nu bar e chi e. 

 

So this is one term, this is nu bar v + 2. And now we have to subtract of nu bar v, so that is v plus 

half nu bar e - v plus half square nu bar e chi e. So we can simplify this, we can put the similar 

terms together. So we have v plus half, + 2 - v - half nu bar e. And then if you take - nu bar e chi 

e common, what we have is v + 2 plus half square - v plus half square. So as we can see, the first 

term gives us 2 nu bar e. And for the second term, we know that a square - b square = a + b times 

a - b. 

 

So For this term, we can write – nu bar e chi e then I have v + 2 plus half + v plus half, this is 

one time, the other term is v + 2 plus half - v - half. So, these cancel out. So, what we have is 2 

nu bar e - 2 times 2v + 3 nu bar e chi e. So, this is the energy difference for the first overtone thus 

we can see that the first overtone will appear at a frequency slightly less than twice of the 

fundamental. So, now, let us see the experimental frequencies of HCL. 

 

So, we have already seen this in the last lecture, but let us focus on the transition frequencies of 

the fundamentals and the overtones now. So, we have the fundamental band here and the 

frequency nu bar is increasing to the left hand side. So, we can see the first overtone is that 5682 

wavenumbers, but the fundamental was that 2890 wavenumbers. So, there is a difference of 98 

wavenumbers so, it is not twice of 2890 but it is twice of 2890 - 98 wavenumbers. Similarly, the 

second overtone is at 8333 wavenumbers and this is also off by 337 wave numbers. 
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You can imagine, because we know the energies of the Morse potential from the Schrodinger 

solution, we can use this information about the frequencies of the fundamental and the first 

overtone to determine what an harmonious the constant is for the molecule, there is another kind 

of transition known as the hot bands. So, we have the hot bands. And these hot bands also have 

smaller intensity than the fundamental like we saw in case of overtones, but this smaller intensity 

is for an entirely different reason. 

 

So, we can have a transition from v = 1 to v = 2. This is the first hot band. So the transition from 

v = 1 to v = 2 is the first hot band. We can also have transition from v = 2 to v = 3, which we call 

as the second hot band. The intensities of these hot bands are very much smaller than the 

fundamental band. The reason for this is that the population of v = 1 and v = 2, which are the 

initial states of the first and second hot bands respectively, are very much smaller than the 

population of v = 0 state, which is the initial state of the fundamental band. 

 

So we can see hot bands at much higher temperature, where the population of the v = 1 level 

increases as calculated from the Maxwell Boltzmann distribution. So hot bands can also be seen 

for a much heavier molecule where the frequency is much small, like a heavier diatomic 

molecule. So this is because when we talk about the Maxwell Boltzmann distribution, let us say 

we have N 1 / N 0, we can write this as exponential or e to the power - h c nu bar / kT. 

 



So, we can increase the population in the v = 1 state or we can increase the N 1, either by 

increasing the temperature or by decreasing the nu bar. So, now, if we have a heavier diatomic 

molecule, then we know that nu bar is given by 1 / 2 pi c root over k / mu. So the mu increases 

for the heavier diatomic molecule. And because the mu increases, the nu bar decreases. And as I 

already mentioned, the decrease of nu bar has a similar effect as the increase of temperatures.  

 

But we should always remember that we only see these hot bands in the iron spectrum because 

of anharmonicity if everything was harmonic, then all the energy levels will be spaced out by the 

same frequency or the energy difference that is nu bar. However, because we have anharmonicity 

at the energy levels come closer and closer. That is why if let us say the wave number is 

increasing to the right and this is my fundamental band and this is my first overtone and this is 

my second overtone. 

 

Then I will see a hot band which is smaller in the intensity and also at a smaller frequency 

compared to the fundamental. So, this will be let us say the first hot band. So, however, there 

will be a change in the response of the hot bands as compared to the overtone as there is a change 

in temperature. With increasing temperature, the population of the excited vibrational state will 

increase at the detriment of the v = 0 state. 

 

This means that the intensity hot bands will also increase and the intensity of the fundamental 

band will decrease as we increase the temperature, this behavior is not the same as the overtones 

with overtones, the initial state is always v = 0. So, the intensities of the overtones will also 

decrease with increasing temperature in the same way that the intensity of the fundamental band 

decreases with increasing temperature. 

 

So, let us see what will all these transitions look like for diatomic molecule? Fairly large spectral 

region, so as I have already drawn it here, we are talking about a fairly large spectral region 

because we have the fundamental band here. The first overtone here the second overtone here 

and the hot band, which appears at a smaller wavenumber as compared to the fundamental 

transition. So, v = 1 to v = 2 is that a frequency smaller than the fundamental? This is because 



the gap between the v = 2 and v = 1 level is smaller than the gap between v = 1and v = 0 levels. 

So, now, we will solve one problem before we end this lecture. 
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So, the problem is given the dissociation energy that is D e 7.33 times 10 to the power - 19 joules 

per molecule and the nu bar e there is a fundamental frequency is 1580 wave numbers and the 

bond length that is r equilibrium is 121 pico meter for oxygen that is 16 oxygen, find the constant 

parameters a of the Morse potential. So, we know the Morse potential that is given by V of r = D 

e 1 - e to the power - a, r - r equilibrium, the whole scored. 

 

So, we have to find the value of this a. So, we know nu bar e is given by 1 / 2 pi c root over k / 

mu. So, we can write k = 2 pi c nu bar square times mu. So, this is 2 times 3.14 times 3 times 10 

to the power 10 centimeter per second and times nu bar that is nu bar e, which is given us 1580 

centimeter inverse this square. And then we have mu and mu because oxygen is a homonuclear 

diatomic molecule, we can approximate this as 8. 

 

And if you convert it into kgs, it will be 1.661 times 10 to the power - 27 kg. So you should do 

this calculation you will find the answer to be 1176.3 neutron meter inverse and we have 

discussed in the previous lecture that k is given by 2 D e times a square. So, if we want to find e 

or if you want to find a, then a equals root over k / 2D e. So, we can write this as k is 1176 



neutron meter inverse divided by 2 times D e, which is given here. So, 2 times 7.33 times 10 to 

the power - 19 joules per molecule. So, this will be 2.83 times 10 to the power 10 meter inverse. 


