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Hello everyone, welcome to the lecture. In the last lecture, we have started discussing 

vibrational spectroscopy. We saw that if k is the force constant of the bond, so we can write 

k. So this is the force, constant of the bond. The potential energy, which is presented by v can 

be written as half kx square. So, here x equal r - r equilibrium so, r is the bond length, at any 

point of time during the vibration and our equilibrium is the equilibrium bond length, the 

potential energy can be approximated by a parabola.  

 

The steeper the walls of the parabola, that is, the stronger is the bond, the greater is the value 

of the force constant, as we see from the figure. So, the steeper is the wall, the value of k is 

large. And if the walls are not that steep, then the value k is small. So, in order to understand 

the connection between the shape of the molecule of potential and the value of k, we can 

expand the potential energy which is a function of r. So, we can expand v of r around the 

minimum by using something called Taylor series.  

 



So, we have to expand using dealer series. So, in other words, as the minimum of the 

potential energy is found at the equilibrium bond length, we will be expanding this v of r 

around or equilibrium. So, Taylor series is a series expansion of a function about a point. So, 

the expansion of a function let us say, f of x at x = a is given by f of x = f of a + 1 / 1 

factorial, df dx at x = a times x - a + 1 / 2 factorial, d 2 f, dx 2 at x = a times x - a whole 

square + 1 / 3 factorial, d 3 f, the dx 3 at x = a times x - a cubed.  

 

And we can write also the higher terms 4 5 6, etc. So, we can expand v of r by writing v r = v 

at r equilibrium + 1 / 1 factorial dv, d r at r equilibrium r - r equilibrium + 1 / 2 factorial d 2 v 

dr 2, at r equilibrium times r - r equilibrium square + 1 / 3 factorial d 3 v dx 3 at r equilibrium 

times r - r equilibrium cubed plus dot dot. So we can further write this expression because we 

know that n factorial is 1 times 2 times dot dot dot times n. So 2 factorial = 1 times 2 = 2, and 

3 factorial = 1 times 2 times 3 = 6.  

 

So we can further write this as we are equilibrium, + dv, dr at r equilibrium r - r equilibrium 

plus half d 2 v dr 2 at r equilibrium, r - r equilibrium square + 1 / 6, d 3 v, dr. 3 r equilibrium r 

- r equilibrium cubed plus dot dot. The first time is a constant, which is the electronic energy 

at the equilibrium geometry or equilibrium bond length. So this term can be arbitrarily set to 

0 in fact, in spectroscopy.  

 

We are more interested in the difference between energy levels than the actual energy of the 

length the second term is 0 as the first derivative at r equilibrium is 0, this is because the v of 

r the potential is minimum at r equilibrium. And we know that the first derivative at the 

minimum is always 0. So the first surviving non 0 terms is the third time. This time, as we 

can see, is proportional to the square of the displacement from the equilibrium position.  

 

For small displacements from the equilibrium bond length, r - r equilibrium is small the 

higher terms like the term I have written here and all the other higher terms can be ignored. 

As we have already discussed in the last lecture, for small displacements, the harmonic 

approximation holds good. For larger displacements from the equilibrium position, we have 

to consider the higher terms. So, we can write this v of r = half d 2 v dr 2 at r equilibrium 

times r - r equilibrium (())(08:50).  

 



So, if we compare this equation with the question we have already written that is v = half kx 

square, where x = r - r equilibrium, we can identify that k = d 2 v = dr 2 at r equilibrium. In 

other words, if the potential energy is sharply carved at the minimum or close to the 

minimum, then k will be large. On the other hand, if the potential energy is wide and shallow, 

like the shown here for this carve around the minimum, that is close to the minimum.  

 

When the k is small so we can calculate the potential energy of any particular bond length, 

then we could determine the curvature or we can determine what the curvature would be and 

therefore, calculate the force constant k and does we can calculate the vibrational frequency.  
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So, now, we have to focus on the energy levels of the simple harmonic oscillator. As we have 

discussed during rotational spectroscopy, one can obtain the energy by solving the 

Schrodinger equation for Schrodinger equation. So, we can write the Schrodinger equation as 

H psi = E psi the Hamiltonian that is the H is given by the kinetic energy operative plus the 

potential energy operator. We already know that the potential energy is half kx square where 

x = r - r equilibrium.  

 

The kind of energy operator depends primarily on the coordinate system being used. So, we 

can write this kind of energy operative as minus h cross square / 2 mu d 2 psi dx 2. So the 

solution offered in your equation gives the energy we can write E v. So, E v = v plus half 

each nu. Here we are using or introducing a new quantum number v. so here v is the 

vibrational quantum number and nu is the vibrational frequency.  

 



So nu is given by 1 / 2 pi root over k by mu, where k is the force constant of the bond. And 

mu is the reduce Morse of this data make simple harmonic oscillator. The vibrational 

quantum number can take integral values, like v can be 0 1 2 3 4 In other words, for every 

value of v, there is a corresponding wave function and a corresponding energy level. The 

vibrational energy that is E v that we have written here is induces.  

 

So, if you want to express this vibrational energy in the unit of wave numbers, we can write 

nu bar v that is given by as we already know E v / hc. So, that is v plus half nu bar. As we can 

see, the vibrational energy depends on the reduced Morse of the molecule because it has 

dependency on the frequency the dependence of vibrational frequency and reduce Morse is 

physically reasonable. Let us say we have 2 atoms connected by a spring, we have item 1 and 

item 2.  

 

And let us say the atom 1 is actually very heavy, then we can assume then the vibration will 

be of the lighter atom that is atom 2 relative to that of the heavier atom. So, if you look into 

the reduced Morse expression, we can write so, we have m 1 and m 2 these are the 2 Morse 

and if we have m 1 greater than greater than m 2, so, we know the reduce Morse mu is given 

by m 1, m 2 divided by m 1 + m 2. However, because m 1 is much greater than m 2, we can 

write m 1 + m 2 is approximately m 1.  

 

So what we get is m 1 m 2 divided by m 1. So, m 1 m 1 cancels, we get empty. So the reduce 

Morse will be approximately m 2. Now, if we have a whole nuclear molecule, but the 2 

Morse are the same, that is m 1 = m 2, then the reduce Morse becomes, so let us say this 

equals m. So, reduce Morse is m 1 m 2 divided by m 1 + m 2. So, it will be m square / 2 m = 

m / 2. But for a hetero nuclear molecule, they say we have a molecule like HI, but the atomic 

weight of iodine is much larger than hydrogen.  

 

So, the Morse of iodine is much heavier in that case, we can write m I is much much greater 

than m H. So, in this case, the mu or the reduce Morse will be approximately = m of H. So, 

now, let us try to draw the vibrational limits. So, we know the energy expression is given by 

v plus half h nu. So, let us draw the energy levels. So, let us say v = 0, v = 1 v = 2 v = 3 v = 4. 

So the energies v = 0 is we have to put 0 in this expression. So what we get this half each nu, 

that is induce, if you had put in wave numbers would get nu bar / 2.  

 



So for v = 1, we get 3 / 2 h nu 4 v = 2, we get 5 / 2 h nu. Then we have 7 / 2 h nu 4, v = 3, and 

we have 9 / 2 h nu 4, v = 4. So the first observation we made is that the energy levels are 

spaced. So, the equal spacing between the energy levels is given by each nu or in wave 

numbers is given by nu bar. This observation is different from what we saw in rotational 

spectroscopy. So, I want to mention it again that the spacing between the energy levels is 

given by each nu or nu bar.  

 

And another interesting point to note is that, when the molecule is in the lowest vibrational 

energy state, that is, when the molecule is at v = 0, then the energy is half h nu. This energy is 

known as the 0 point energy. So for rotational spectroscopy, the lowest energy is 0. But in 

vibrational spectroscopy, the lowest energy is half h nu. That is the lowest energy is not 0 if 

the molecule is in its lowest energy state.  

 

The physical significance of it is that even at the lowest vibrational level, the atom will still 

vibrate with the energy half nu bar. In other words, the molecule is never addressed. The 

prediction of the 0 point energy is the basic difference between classical and quantum 

approaches to molecule vibration. Classical mechanics could find no objection molecule 

possessing no vibrational energy, but quantum mechanics says that the molecule should 

always vibrate to some extent. 

 

So in order to obtain a vibrational spectrum, because that is the reason we are discussing 

vibrational spectroscopy, so, because we need to obtain a spectrum, so in order to obtain the 

spectrum transitions should happen from 1 vibrational energy level to another. We have to 

ask the question between which levels can the transition take place? In other words, the 

question is what change in vibrational quantum number is allowed for a vibrational 

spectrum?  

 

Or in other words, what is the allowed value for delta v so, in the next lecture, we will discuss 

the selection rules for vibrational transitions. And in the remaining part of this lecture will 

solve few questions on the topic that we have discussed today. 
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So, the first question we have is consider a homonuclear diatomic molecule X 2. The force 

constant of the X 2 or the X X bond is k, the atomic weight of X is given us a. So, what we 

have to do is to show that, the 0 point energy is 0 can be written as this expression has been 

given. So, we have to show that the 0 point energy can be return as this expression, and in 

this expression, in a is the Avogadro's number. So we know that the 0 point energy, this write 

by E 0 is given by half h nu.  

 

So we can write this as half h, and nu, we can write 1 / 2 pi root over k / mu. So, this is, h / 2 

pi becomes h cross, so h cross / 2 route over k / mu. So, we have to find that reduce Morse of 

x 2, so, the atomic rate is a, so we can write that the Morse of 1 atom is given by a / 

Avogadro number so, that reduced Morse is a / N a in a times a / N a in a divided by 2 times a 

/ N a. So, that will be a / 2 times N a.  

 

So, now we can see E 0 is we have h cross / 2 route over k and we will put the expression of 

the reduced Morse that is a times 2 times N a. So, we can write this as h cross root over 2 kN 

a divided by 4 a. So, this becomes each cross root over kN a divided by 2a. So, the 0 point 

energy is given by this expression. And this is the same expression that we have been asked 

to show in the question. So let us go to the second question.  
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So, we have 2 molecules, one is a homonuclear diatomic molecule that is AB and the other is 

a whole nuclear dyadic molecule that is B 2. And these 2 molecules have seen force constants 

and are vibrating in simple harmonic motion. That atomic weight of A is 3 times atomic 

weight of B and the ratio of the 0 point energies. So we have to find the ratio of the 0 point 

energies of AB and B 2 that is you have to find E 0, AB divided by E 0, BB or B 2. And this 

is a multiple choice question.  

 

So we have to solve the question and see which answer is correct. So let us find the reduced 

Morse of BB or B2 to that we can write M B times M B divided by M B + M B. So that is 

given by M B / 2. So in the freshman it is given that the M A is 3 times of M B, so M A = 3 

M B. So we can write mu of AB = 3 M B times M B divided by 3M B + M B. So this 

becomes 3M B square / 4M B. So that is, 3 / 4M B. So we know that the 0 point energy is 

given by, or inversely proportional to 1 / root over mu.  

 

And the force constant cases the same for AB and B2. So we can write, easy through AB 

divided by E 0, BB. We can write this as route over mu BB B divided by mu AB. So that will 

be M B / 2. That is mu AB divided by 3 M B / 4 that is for view AB. So this is equals M B M 

B cancels. So we have route over 2 / 3. So now if you look into the choices, the right answer 

is choice D. So the issue is route over 2 / 3.  
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So we have another problem. The problem states that the far infrared spectrum of potassium 

chloride has an intense line at 278 wave numbers. Calculate the force constant. So we have to 

calculate the force constant and the period of vibration of KCL. So we have to calculate the 

force constant, and the period of vibration. And the atomic waves of K and CL are given. So 

let us first try to find the force constant. So let us evaluate the reduced Morse of KCL.  

 

So this is given by 38.964 times 34.969 divided by 38.964 + 34.969. So this is equal to 

18.4298 amu. so because 1 amu = 1.661 times 10 to the power - 27 kgs, so we can read this 

as 18.429 times 1.661 times 10 to the power - 27 kgs. So we know nu bar is given by 1 / 2 

policy route over k / mu. Or in other words, because we have to find the force constant that is 

k, you can read k =2 pi c, nu bar whole square times nu. 

  

Now, if you put in the values we have 2 times 3.14 then c 3 times 10 to the power 10 

centimetres per second and nu bar here is given in the question that is 278 wave numbers. So, 

we have 278 wave numbers. So, we have to take the square of this entertaining times mu and 

mu is 18.429 times 1.661 times 10 to the power - 27 kg. So, if you do this math what we get 

is 83.97 Newton meter inverse.  

 

So, we are also need to find the period of vibration. So, we can write period of vibration this 

equals 1 / nu. And because h nu = hc nu bar. So, we know nu = c nu bar. So, 1 / nu I can write 

as 1 / c nu bar. So, that is 1 / 3 times 10 to the power 10 centimetres per second times 278 

centimetre inverse. So, what we get the final answer for the period of vibration is 1.20 times 

10 to the bar - 13 second 



(Refer Slide Time: 31:43) 

 

So, the next question we have is the force constant so, now the k is given, so, the force 

constant of roaming is 240 Newton meter inverse. So, we have to calculate the fundamental 

vibrational frequency and the 0 point energy of roaming, that atomic weight of roaming has 

been given in the question. So, we will start by calculating that reduce Morse of roaming. So, 

reduce Morse of roaming is 78.92 times 78.92 divided by 2 times 78.92 that is 39.46 amu. 

But here you see this roaming is a homeowner nuclear diatomic molecule.  

 

So the reduce Morse as I said is given by m / 2. So, we can also get this number 39.46 we just 

divide 78.92 divided by 2, this is also 39.46. So we have to convert into kg so we will write 

39 times 46 times 1.661 times 10 to the power - 27 kg. So we have to find the frequency. So 

frequency is given by 1 / 2 Pi root over k / mu. So we can write this is 1 / 2 pi times k 240 

Newton meter inverse, you had a mu that is 39.46 times 1.661 times 10 to the power - 27 kg.  

 

So whole to the power half and if you do this calculation, what you get is 9.63 times 10 to the 

power 12 second inverse. So, the frequency in wave number is given by nu / c by sea or nu 

bar was nu / c. So we can write this as 9.63 times 10 to the power 12 divided by 3 times 10 to 

the power 10. So, that will be 321 wave numbers. So, we have found the vibrational 

frequency, both in second inverse and in wave numbers.  

 

And now we have to find the 0 point energy. So, the 0 point energy that is E 0 is even by half 

h nu. So we can write this as 6.626 times 10 to the power - 34. That is a hell of h, then 9.63 



times 10 to the power 12 divided by 2. So, if we do this what (())(35:25) we get is 3.19 times 

10 to the power - 21 choose 


