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In this lecture we will discuss the origin of the rotational selection rule. You will recall that the 

intensity of a transition is proportional to the square of the transition dipole moment integral. 

You will also recall that in an earlier lecture on rotational spectroscopy my colleague has 

mentioned that the intensity of a rotational transition depends on the rotational transition dipole 

moment integral which is given here where this is the final rotational state this Psi r is the initial 

rotational state and mu is the dipole moment of the molecule. 

 

We will now outline the derivation of this selection rule and keep in mind that the mathematics is 

rather tedious. By tedious I mean that it is not really hard but there are a lot of steps and it will 

take a long time to go through all the steps, so in the interest of time I will show you how the 

derivation works and not go through every step of it. Our focus is to understand the nature of the 



wave function and understand how the rotational selection rule comes about. We consider the 

simplest rotating chemical system namely a rotating diatomic molecule. 
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The question then is what are the eigen functions of a rotating diatomic molecule we have to 

keep in mind that a diatomic undergoing pure rotation is a two body problem which is in motion 

but there is 0 potential energy. So, the only energy of this two bodies is the kinetic energy of 

rotation. Now you can reduce this to body problem where there is no translation of the center of 

mass and there is only kinetic energy you can reduce it to an equivalent one body problem where 

there is a rotation of only one mass which has a different mass which is called the reduced mass 

which I will discuss and that undergoes rotation with the same angular velocity as that of the 

diatomic molecule. 

 

So consider the diatomic molecule to be something like this that you have the two atoms A and B 

and let us say that this molecule is undergoing rotation like this. We can show using some 

mathematics that this is equivalent to a single mass rotating in the same direction with the same 

angular velocity but the mass of this is M A M B divided by M A + M B this is called the 

reduced mass of the system. The position of this reduced mass is given by the position vector r is 

equal to r of A - r of B. 

 



So, the system that we have to equivalently consider while thinking of a rotating diatomic is that 

of a mass with that this reduced mass and the position vector given by the r here. For the ease of 

the mathematics we consider the system in spherical coordinates. So, in spherical coordinates 

you can think of this as the diatomic having the spherical coordinate system at its center of mass 

and here are the axis z axis x and y axis. 

 

And the orientation of this diatomic depends on the angles theta and Phi which are the angles 

associated with the spherical coordinates. The angles theta and Phi completely specify the 

orientation of this diatomic molecule and so the wave function of the system the rotational wave 

function is some function of theta and Phi. Our goal is to find the eigen functions of the 

Hamiltonian associated with the rotation of this diatomic system. 
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To obtain the Eigen functions of this molecule we first need to write its Hamiltonian and for that 

we start with the classical energy of the system. Now the classical energy only has kinetic energy 

because as we have said there is no potential energy and this is the rotation of a molecule in the 

absence of any other forces. So, the kinetic energy which we have written here K kinetic energy 

of this rotating system is the square of the angular momentum, angular momentum square 

divided by two times the moment of inertia. 

 



And the moment of inertia has the following expression r is equal to mu r squared mu is the 

reduced mass which has the expression given here where MA and MB are the two atomic 

masses. The corresponding quantum mechanical Hamiltonian operator is H hat is equal to L hat 

squared operator divided by 2I, we solve the Schrodinger equation for this system which is 

essentially the Eigen value equation of the Hamiltonian.  

 

So, this is the Hamiltonian and these are the Eigen functions and this is the corresponding Eigen 

value. Let us look at the nature of the Eigen functions and the Eigen value 
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Here is the Schrodinger equation for the rotating diatomic system and on solving this we find 

that the energy has the expression L times L + 1 H bar squared by 2I and these rotational Eigen 

functions are called spherical harmonics they depend on theta and Phi the 2 variables and have 

associated quantum numbers you l and M. so, this Psi r is usually written as the spherical 

harmonic symbol which is a y LM and this is a function of theta and Phi. 

 

The spherical harmonics further are a product of two functions one which is a function of theta 

which I will denote as capital theta as a function of theta multiplied by capital Phi which is a 

function of Phi. The function of theta depends on the quantum numbers L and M and the 

function of Phi depends on the quantum number M. The function Phi of M this one has a fairly 



straightforward form which is 1 over square root of 2 pi e to the power of i M Phi where the 

values of M are 0 + - 1 + - 2 and so on up to + or – L. 

 

So the range of M is from - L to + L in integral increments. There are 2L + 1 values Phi M 

functions which implies that for a given L the degeneracy of a spherical harmonic is 2l + 1. Now 

let us look at the function of theta this is a little more complicated and it has the following form 

this has a normalization constant N of LM multiplied by a function which depends on L and only 

the magnitude of M and it is a function of the variable cosine theta. 

 

This is the normalization constant as I said and this function is called The Associated Legendre 

function. Form of these Associated Legendre functions can be easily found in any physical 

chemistry textbook or spectroscopy textbook and I will just list a few of them to give you a feel 

for how these functions look. So, for example P when capital M is equal to 0 L is equal to 0 

cosine of theta is equal to 1 and when capital P the Associated Legendre function when M is 

equal to 0 and L is equal to one cosine of theta is equal to cosine theta. 

 

And another one when M is equal to 1, l is equal to 1 cosine theta this is equal to 1 over cosine 

squared theta which is equal to sine squared theta. So, clearly this spherical harmonic here has a 

functional form which depends on theta and Phi and for every theta and Phi there is a particular 

value of the function. The Phi part is always e to the power of i M Phi as we have seen and the 

theta part depends on the Associated Legendre functions. Now the Associated Legendre 

functions can always be looked up in a book but there is also a recursion relation which connects 

these Associated Legendre functions. 

 

So let us look at this recursion relation because as we will see this will help us derive the 

selection rule for rotational spectroscopy. 
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So here I have written out the spherical harmonic one more time which depends on a function of 

theta and a function of Phi. The function of Phi is 1 over square root of 2 pi e to the power of i M 

Phi as we have seen and the function of theta is the normalization constant multiplied by the 

Associated Legendre function. The recursion relation for The Associated Legendre function 

looks like this so you note here that you have a Legendre function P which depends on L and M 

and that is related to the Legendre function which depends on L - 1 and M and L + 1 and M. 

 

So given a particular Legendre function with L is equal to 0 you can find all the other ones for a 

given M. Using this we can get expressions for Phi L M which is let us say the initial rotational 

state and Psi of L prime M prime which is the final rotational state and then using these 2 and the 

expression for the dipole moment of the molecule we can find the transition dipole moment 

integral and from there the selection rule for the intensity of a rotational transition. 
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We have here the expression for the rotational transition dipole moment integral where the Psi r 

prime is the final rotational state Psi r is the initial rotational state and mu is the dipole moment 

of the molecule. We have seen what the form of the initial and final states are those are the 

spherical harmonics having different quantum numbers. So, for example Phi r prime could be 

denoted as the spherical harmonic L prime M prime and this Psi of r the initial state can be 

denoted as y of L M. 

 

And we have seen that these spherical harmonics have Associated Legendre functions with them 

and they have a recursion relation. So, in principle we can write out the expressions for these 

rotational functions which would be functions of theta and Phi. Let us now write the expression 

for the dipole moment and then we can evaluate the entire integral. For this we have to realize 

that for a diatomic molecule the dipole moment is along the molecule or along the bond and if 

we go back to our picture of the coordinates where the molecule was like this A and B where it 

made an angle theta with the z axis. 

 

And the projection of this made an angle Phi with the x axis then the dipole moment vector 

which is in this direction the mu vector can be decomposed into components mu is equal to mu x 

of i which is the unit vector in the x direction + mu yj the unit vector in the y Direction + mu z K 

which is the unit vector in the z direction. Now if the magnitude of the dipole moment vector is 



mu 0 the x y and z components of this dipole moment can be obtained by recognizing the 

orientation of this dipole moment vector. 

 

So, for example the z component would be mu 0 cosine of theta and the projection on the xy 

plane would be this distance here would be mu 0 sine theta and further the projection on the x 

axis would be mu 0 sine theta cosine of Phi. And similarly we can get the component on the y 

axis. So, the dipole moment vector is equal to mu 0 sine theta cosine of Phi i + sine theta sine of 

Phi j the z component + cosine of theta k which is the k component. 

 

We need to substitute this expression for the dipole moment in this transition dipole moment 

integral which is here and that will give us the conditions for which this integral is nonzero and 

thereby it will give us the rotational selection rule. 
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So, a job is to obtain the value of this integral Psi rotational prime star mu psy of our d tau so that 

is the spherical harmonic L prime M prime multiplied by the dipole moment vector multiplied by 

Psi of L M d tau, let us now write the expression for this integral explicitly keeping in mind that 

the dipole moment 3 components x y and z so there will be 3 terms. So, this entire integral is 

equal to mu 0 the magnitude of the dipole moment divided by 2 pi the x component is 0 to 2 pi 

these are the range of integration for the Phi variable integral 0 to PI this is the range of 



integration for the theta and then the spherical harmonic corresponding to L prime M prime 

which is the function theta depending on L prime M prime. 

 

Function of theta multiplied by the Phi part which is e to the power of - i M prime Phi multiplied 

by sine theta cosine of Phi which is the x component of the dipole moment comes from here this 

first part was y of L prime M prime and then we write y of L M which is the theta L M function 

of theta multiplied by e to the power of i M Phi. So, this is y of L M and finally the variable of 

integration and here in spherical coordinates for constant r the volume element is sine theta d 

theta d Phi. 

 

And similarly we will have to write the y and z components of the dipole moment. So, we have 

then j 0 to 2pi 0 to PI these are the limits of integration for pi and theta respectively and again L 

prime M prime theta e to the power of - i M prime Phi and now the mu y component is sine theta 

sine Phi x j LM theta e to the power of i M Phi sine theta d theta d Phi again let us write these as 

y of L prime M prime this is mu of y this is y of L M and this is the volume element of 

integration. 

 

And similarly we can write the z component which is k hat 0 to 2pi 0 to PI in prime theta e to the 

power of; where this is y L prime M prime this comes from the mu z and this comes from y L M 

and this is the volume element and the whole thing has a bracket which closes the bracket that 

we opened here which is multiplied by mu 0 divided by 2 pi. Now if we recall that the theta part 

of all the spherical harmonics say for example this one depends on the Associated Legendre 

functions. So, this theta is a normalization constant depending on L and M multiplied by an 

Associated Legendre function which depends on L and M. 

 

And this has a recursion relation connecting it 2P M L + 1 and P M L - 1 now that we have 

expressions for all the terms here if we substitute the value of theta which depends on the 

quantum numbers LNM from the recursion relation and evaluate this integral which involves a 

little bit more tedious mathematics then we will see that the only time this entire integral is 

nonzero is when Delta L is equal to + or - 1 and by Delta L I mean L prime - L which is the 

difference in quantum numbers between the two rotational levels. 



 

And Delta M should be 0 or + or - 1 sometimes the notation for L is J so L the notation J is 

sometimes used and then the rotational selection rule appears as Delta J is equal to + or - 1 but 

this is essentially the same as what we have seen here. So, the selection rule that we see for 

rotational transitions follows from quantum mechanics and it depends on the rotational Eigen 

functions and the dipole moment vector. 

 

The selection rule Delta M is equal to 0 or + or - 1 is not discussed that often because both of 

these conditions this and this have to be satisfied for the transition dipole moment integral to be 

nonzero, so for therefore both of these together constitute the selection rule and the minimal 

selection rule is Delta L is equal to + or - 1 our Delta J is equal to + or - 1 and that therefore is 

the most important condition for the transition to occur. 

 

Even more grossly the selection rule is that the total dipole moment of the molecule should be 

nonzero. So, the first level of the selection rule is simply that the molecule should have a 

permanent dipole moment so that mu 0 is nonzero and then Delta L or Delta J is equal to + or - 1 

and then Delta M is equal to 0 + or – 1. So, in some sense these selection rules can be stated to 

be more general to going to be more specific. 

 

You will now hopefully appreciate the origins of the rotational selection rules which comes to us 

from applying quantum mechanics to the rotating molecule.  

 


