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Thermodynamic Observables: It is all in the Average

Welcome to the next lecture, as I mentioned in the beginning of molecular thermodynamics

lecture is that, that this particular subject can explain macroscopic observations because of

averaging. It is all in the average as it is mentioned. We will explain to you in a moment.
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The thermodynamic observables such as energy, pressure, volume are averages weighted by

the probability. You know by probability what we mean is that the probability is associated

with a particular type of systems. We talked about three different kinds of probabilities, one

associated  with  the  classical  systems,  classical  particles  which  gives  rise  to  Boltzmann

Distribution.  We  also  talked  about  Bosons  and  Fermions  giving  rise  to  Bose–Einstein

statistics and Fermi–Dirac statistics.

So these different  statistics  gives us  probabilities  of particles  occupying a certain  energy

levels. And once we have the probabilities, then we can use these probabilities as weights in

the average calculations. For example, I mentioned to you before that if I let us say calculate

the average age of (())(1:30) students, then all that I can do, I can do that in two different

ways. I can sum up the age of all students and divide by the number of all students. Or I can

associate weights to each batch of students assuming that the first year batch has all age of 18

and I know their number.



Then I can use that information to write like this that 18 is the age multiplied by the number

of students, plus let us say second year students may be 19, so 19 multiplied by the number of

students for the second year. And then 20 multiplied by the number of students of third year

and then I will divide by the all the weights. That means number of students from each year.

So  this  is  called  weighted  average.  And  in  statistical  thermodynamics  we  do  weighted

averaging in order to get the average property.

For example, when I talk about the average energy, it is E i P i, P is the weights and E i is the

energy. Now you know that E i is basically Boltzmann Distribution. For example, we know

that P i is e to the power minus beta E i or e to the power minus E i by k B T. Beta is 1 by k B

T. Now if a particular state has lower energy, then this quantity will be, if it is lower energy, it

will be small. No, if it is lower energy, let us say it is more negative, lower energy means let

us say E i becomes more negative, then this quantity will be larger.

If it is higher, a positive quantity, it will be smaller. And therefore, P i for a low energy state

will be higher and therefore it will contribute more to the system, which means that when we

calculate the average property, the average will  be governed by the systems which are of

lower energy. I will give you an example. Let us say we talk about protein folding. You know

the folded state is more stable, therefore it has lower energy. And unfolded state will be less

stable and therefore it will have higher energy.

Now when you calculate the average property of the system, it will be governed by the folded

state. Now done folded state, however there is a catch to that, you will see that folded states,

there is only one possible ways of getting a perfect folded state, which you call as native

state.  However  there  are  many  many  other  ways  of  getting  an  unfolded  state.  So  there

although each term will  contribute small  amount,  however there will  be more number of

them. So and that is essentially what we are talking about as an entropy contribution.

That means there are more possibilities for unfolded state to be present. Therefore the entropy

of the unfolded state will be more and there is less possibilities for the folded state to be

present, so entropy will be less. However energetically folded state will be more stable than

the unfolded state. And this balance will lead to a smaller difference between the folded state

and unfolded state. So idea behind that is that all that we calculate, all that we observe and

they are nothing but the average properties associated with the weights.



And weights here is associated with the energy of the particular system. Similarly we can talk

about pressure and volume as well. And this reminds us of what we have observed in the

expectation value of the property one of chemistry. So you remember in Quantum Chemistry

the expectation value which is nothing but the average value of any property A is given by

this particular equation, psi star A psi d tau if I want to be more general. And then this A is an

operator but once it operates on the psi, let us say we get some value, it need not be again

value. Let us say that we get as A, so then this one immediately will give us psi star psi a d

tau. Now psi star psi you know as a probability density, so it is almost like our P i.

And A is something like the property which is our E i and then this corresponds to the same

as the above equation. So that is why and since this one the statistical thermodynamics came

before Quantum Mechanics, so remember it started from 1872 by Boltzmann. And Quantum

Mechanics  came around 1925.  So since the statistical  thermodynamics  came before,  this

probability is used to be called the new probability. The idea behind both of them essentially

is the same that we only observe what is the average value.
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So in order to give you an example, we are going to talk about particle in a box system. So

this derivation I will show you in a moment. But before that let us just do the derivations

ourselves.
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So let us do the average energy calculation for a particle in a box system. So average energy

or energy of a particle in a box system E n is given by n square, h square by 8 m L square

where n is  1,  2,  3,  up to infinity. And when you draw that,  we are seeing that how you

actually normally represent it like that. So this is n equal to 1, and equal to 2, n equal to 3 and

things like that. Now the partition function of the system Q is given by as you know, i e to the

power minus E i by k B T. Here i denotes the energy level. Since we are denoting energy

levels by n we can write that as e to the power minus E n by k B T, where n goes from 1 to

infinity.

So if we specify that, it will be minus n square h square by 8 m L square k B T. Now this is a

sum and that sum is a discrete sum, it goes discretely from 1, 2 and different levels. However

sometimes it is helpful to convert the sum to an integration. So for example, if I am summing

n equal to 1 to infinity, and when there are so many values present, we can imagine that the

differences are actually smaller and then we are integrating over all possibilities.

Although we are,  in that  we are taking all  possible  values of n,  we can write that  as an

integration of d n that goes from all the way from 0 to infinity. We are adding more values in

between but we are assuming that since we are doing like infinite number of points, that is

why  these  differences  will  not  matter  so  much.  So  it  is  called  discrete  to  continuous

approximation.
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Similarly so then in that case we can write the sum which is there on the left hand side as n

equal to 1 to infinity, e to the power minus n square h square by 8 m L square as integration

of e to the power minus n square h square, 8 m L square d n going from n equal to 0 to

infinity. Now in that we are talking about a fixed value of L which means that this quantity

which is there on the right hand side, it resembles an integration going from 0 to infinity, e to

the power minus a x square d x.

This type of integration is difficult to solve at least in the 12th std. level. However one can use

some formula for standard integration in order to do this type of integration. This is called

Gaussian integral and there is standard value available for that.
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For example, the standard value for 0 to infinity, e to the power minus a x square d x is half

root over pi by a. For minus infinity to plus infinity it is root over pi by a and for 0 to infinity,

it is half root over pi by a. So we are taking the n equal to 0 because then it helps us in doing

the integration and since we taking so many integers anyway, then adding one more is now

going to matter so much, because n equal to 0 is going to add 0 value to that.

So when you are doing the integration, we are summing up all values, so there we add the

zeroth value, 0 value also. That is not going to change the result because we are adding a zero

value. If you put n equal to 0, you are going to get 0 energy and that is now going to change

the partition function at all, which means that this sum I can also write as n equal to 0 to

infinity, e to the power minus n square, h square 8 m L square. Because in a sum I can always

add an extra zero, meaning of course here, of course I am adding not zero, I am adding value

1, I am adding 1 value.

But that is again not going to change the sum which is there for infinite number of steps. Now

once we do that, then what is our a here? Now if I compare this equation with this equation,

once I compare these two, I see that.
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My x is like n and my a is h square by 8 m L square. So therefore my result for this particular

integration will be half root over pi by root over a which is root over of h square by 8m L

square. Okay, I forgot to mention one thing. There is a k B T also down here. So here it will

be k B T as well.

(Refer Slide Time: 12:32)

So it is E square by k B T. So I will just correct that. Yes, as you can see this is there is k B T

here. So there is a k B T there as well. And there is a k B T there as well. This is e by k B T,

right? So I am going to write that.



(Refer Slide Time: 13:05)

So in that case our this thing has k B T here as well. And that is what we get. Now which

means that I get half, this term will go in the numerator, it will become 8 m L square k B T by

Pi, no pi will be under numerator itself. It will be h square. Anything else I am missing? 8 m

L square k B T Pi and the whole root will come.

(Refer Slide Time: 13:41)

Now put the 2 inside, what I am going to get is 8 m L square k B T Pi by 4 h square. I put 2

inside and it gives me 2, so I get 2 pi m k B T by h square to the power half into L. So that is

the partition function that I got for particle  in a 1-dimensional box. And you know what

partition  function  is,  it  is  just  the  sum of  the  exponential  of  the  energy  values.  So  this

partition function I got as Q and now we have to see that how you are going to get the

average energy. In order to calculate the average energy, we have to write as E i P i and E i P i



is nothing but E i e to the power minus E i by k B T divided by sum over e to the power

minus E i by k B T.
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So in order to obtain this particular relation, we need to use a trick. I will tell you what track

is. So if my Q is this, then if I take del ln Q by del T, what I am going to get? Let us see, if I

do that, then I am going to get del ln Q by del T is 1 by Q del Q by del T. So Q is this one, so

I am going to get 1 by Q into del Q by del T. Now let us differentiate this quantity and if I do

that, I am going to get e to the power minus E i and there is a sum there. Sum over i e to the

power minus E i by k B T and then I have to take the differentiation of E i by k B T with

respect to T, so I will get E i by k B and then byte is there, so I will get minus 1 by T square.

So let us simplify that, I get E i, e to the power minus E i by k B T. Outside I will get minus 1

by k B T square divided by e to the power minus E i by k B T. So once that happens, so what

I am doing now, del ln Q by del T, so minus 1 by k B t  square. On the right hand this

particular quantity, this quantity will resemble as you can see exactly E i P I, which means my

del ln Q by del T is nothing but 1 by k B T square and average energy.
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So average energy therefore is minus k B T square del ln Q by del T. Why I do that? Because

I have my Q already written. What was the Q? I will show you.

(Refer Slide Time: 17:43)

My Q is this quantity. This is my Q, 2 pi m k B T by h square to the power half into L.
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Okay, so that means I have to do del ln, so now if I want to get the average value, I have to do

del ln Q by del T which is del ln Q by del T of this particular quantity. So let us do that. So

this quantity is del ln Q by del T into minus k B T square I have to do, so let us do that. Minus

k B T square first I will write it, multiplied by I will do the differentiation of Q, so del ln Q by

del T is 1 by Q, del Q by del T, 1 by Q into del Q by del T which means I have to take the

differentiation of this guy. Now in that 2 pi m k B h square, they are all constant. Half and L,

this is all constant. So I have to basically do T to the power half derivation. T to the power

half is half T to the power minus half. That is now, our thing is now almost done.

Now let us see what it gives us. Minus k B T square into 1 by Q will be h square divided by 2

pi m k B T to the power half and there will be an L there, 1 by L, multiplied by 2 pi m k B by

h square to the power half into L is there. And there is half here which I am writing here and



T to the power minus half which I am writing here. Now let us see what are the things that

are going to cancel, h square, h square going to cancel. 2 pi m, 2 pi m going to cancel, k B

also going to cancel, L is going to cancel, giving us minus k B T square by 2.

And then I have 1 by T to the power half and I have here also 1 by T to the power half. I am

missing some quantity, let me see. So minus k B T square is fine, 1 by Q del Q by del T, now

when I do del Q by del T, I have this constant quantity, 2 pi m k B. So there also there is a T

there. No, not T, so 2 pi m k B by h square to the power half L is there. T to the power half is

there. So T to the power half is half, minus half, that is also there. So now I have minus k B T

square by 2. This is fine, but I am getting minus. Minus, there is a minus missing somewhere.

Student: Sir, in differentiation, sir there you have done the del ln Q by del T, that will be the

plus k B T.

Correct. So let me see that. So del ln Q by del T let us review that.

(Refer Slide Time: 21:48)

1 by Q del Q by del T, so 1 by Q is given in the first step, 1 by Q and then I have to

differentiate del Q by del T, so e to the power minus E by k B T and then I have E i by k B

and then I have a minus there and there is minus already is there. And then minus, minus

becomes plus. So I have plus and I have plus here.
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I have plus here, then I have plus here, I have a plus here. I have plus here. I have a plus here

and that is giving us k B T square by half into 1 by T is half k B T. And that is the average

energy of particle in a box in 1-dimensional box. So if I now take it to the 3-dimensional box,

you can see that there is all the dimensions are independent.
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Therefore the average energy for a 3-D box will become half k B T plus half k B T plus half k

B T, is equal to 3 by 2 k B T. Now you know that from the equipartition theorem that for

every  dimension  there  is  half  k  B T energy is  there  for  translation  and therefore  for  3-

dimensional system the average energy classically is also 3 by 2 k B T. So we can see that for

non-interacting systems like particle in a box which does not interact with anything, and does

not have any, so it has only the translational energy, the average energy is also giving us the

same value.

If we use the classical description, classical kinetic energy, like P square by 2 m and that also

average you are going to as 3 by 2 k B T. So that is one of the example that how the average

energy is coming to be 3 by 2 k B T using the formula of molecular thermodynamics. So all

that we have done is that we have taken all possible energy values like n square h square by 8

m L square and weighted them by their corresponding Boltzmann probability which is e to

the power minus E i by k B T. And then we took the average of that. And once we do that, we

are getting to see that it is nothing but 3 by 2 k B T.

So like that you can apply this for many different possible systems and then you are going to

get the desired observable values from what we see in the classical thermodynamics. So that

is where the connection between molecular thermodynamics and classical thermodynamics

takes place.  So for example,  when you do simulations,  computer simulations of particles,

there also we actually move atoms and molecules every time, every timestamp. So we have

their positions and coordinates and then velocities and after that, after doing the simulations,



after generating so many different microstates from the simulation, we calculate the average

property.

Like energy is free energies and all that and that reproduce the experimentally observable

quantities. For example, binding energy of two proteins, we can do that from simulations just

because  we know that  by  following  the  formula  of  statistical  thermodynamics  once  you

calculate  average  property, is  going  to  correspond to  the  macroscopically  experimentally

observable quantity, without that molecular thermodynamics would not have worked. So that

is where the connection lies.
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So you can see the derivation here also. And you can see that yes, here also you can see that

this is plus k B T square and I have done directly for the 3-dimensional box in this particular

case.
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So now just  brief review, entropy in a nutshell,  is  that  for a spontaneous process system

increases towards a more probable state. That is what the second law of thermodynamics

from the statistical point of view. W of the most probable state is the highest. So when you

calculate W from many different distributions, but the W corresponding to the most probable

distribution will have the highest value and that is enough, that is the only one that you have

to take. We have seen that energy is not conserved, energy is conserved but the distribution of

energy is not conserved because we can either accumulate all the energy in one place or we

can that is called a pick distribution or we can make it flatter and that is flat distribution.

And because the distribution is not constant, we know that entropy also will not be constant

because entropy will go by the probabilities of distributing these energies. Okay, as I said,

entropy is nothing but the distribution of energy. 


