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Now  let  us  talk  about  Boltzmann  Distribution  back  again.  We  have  already  derived

Boltzmann Distributions. Remember that when we calculated the particles in different levels

for different distributions and then calculated how many particles are there in level 1, level 0,

level 2 and things like that. And then we showed that it by fitting, by numerical fitting that it

follows something like e to the power minus, e into to the power minus B epsilon.

So that B and B one can show that it is nothing but 1 by k B T that I also mentioned. So I will

just remind you, so that is what we talked about and that is called probability. So probability

of particle to occupy i th level is nothing but number of particle in the i th level divided by

total number of particle, n i by n. And that is already I have shown the derivation in which we

showed that it is nothing but e to the power minus e i by k B T. So energy of the i th level and

divided by k B T. That is nothing but e to the power minus, remember we talked about beta E.

It is nothing but the same thing, beta E i we said.

See this b is nothing but 1 by k B T, so it will be E i by k B T and that is what it is mentioned

here. And there was a here and that a is nothing but a normalization constant and you can

normalize,  for normalization constant it  must be this one so that when you sum over the

whole quantity, then it becomes 1 because it is a probability. You know the probability. When

you sum over the probability, it has to be 1. So when you sum over this particular quantity, it



has to be 1 and therefore this quantity in the denominator is just nothing but normalization

constant.

And that  is  normally  denoted as Q and this  Q is  called  partition  function.  This partition

function therefore is nothing but just a number. Why it is a number? Because it is a sum of

exponentials of energy values basically. So if I have let you say three different energy values,

let us say I have 0 energy value, 1 unit of energy value and 2 units of energy value. And let us

say I have two particle in the zeroth level, two particle in the first level and one particle in the

second level. How can I calculate my partition function? So I have to calculate my partition

function by taking into account of this expression that it is e to the power minus E i by k B T.

So in my partition function I will have e to the power minus 0 by k B T plus e to the power

minus epsilon by k B T, plus e to the power minus 2 epsilon by k B T. That will be my

partition function. And what is my probability? My probability will be P 0 will be 2 by 5. P 1

will be 2 by 5. And P 2 will be 1 by 5. Okay, because there is only one particle in the two

level.  Is  it  clear?  n  i  by  n  we have  used.  And  we have  used  the  definition  of  partition

functions to…

Student: Sir, we could do n i by n. That is total number of…

n i by n. n i is that number of particles in the i th level.

Student: And is it total number…

Total number of particle.

Student: Then how this exponential sum gives total number of particles?

No, exponential sum does not give it; it gives just the, n i by n is denoted as here because n i

by n was fitted to this expression. So n i by and was fitted to e to the power minus b E i. It

was fitted to that. And this is a normalization constant. Why? Because such that the sum over

n i by n is nothing but 1. So that means sum over e to the power minus b epsilon is 1. a is just

a constant, it will come out. So a is e to the power minus b epsilon i equal to 1. So 1 by a is

nothing but sum over e to the power minus b epsilon i. And that is what is shown here. So this

can be written as e to the power minus b epsilon i by 1 by a. And 1 by a is nothing but this

one, sum. It is just a normalization constant.
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So now this Q is  called  partition  function.  And with this  probability  the entropy will  be

defined by k B sum over p i ln p i. So I can just show you that in a very brief derivation.

(Refer Slide Time: 4:47)

So we know that W is n factorial by n 1 factorial, n 2 factorial, n 3 factorial and things like

that, which means that I can write that as n factorial by product of n i factorial. Correct? So

now we know that entropy is k B ln W which means entropy is k B ln n factorial by product

of n i factorial, which means I can write that as k B ln n factorial minus sum over ln n i

factorial. The product becomes sum when we use ln. In case of ln the product becomes sum,

that is why it is a sum.



Now once we have done that, we can write that as k B n ln n minus and, using Sterling’s

approximation minus we can write as, sum over i n i ln n i minus n i. That I put as sum. So

now I can write again k B n ln n minus n, minus sum over n i ln n i plus sum over n i. I will

continue that derivation here. So S equal to k B n ln n minus n minus sum over n i ln n i plus

n. So this n and this n cancels each other giving us k B n ln n minus n i ln n i sum over. Now

how can I do that? Now I can write the n as sum over n i, n i ln n minus sum over n i ln n i.

Now I write k B, n i take common, n i, ln n minus ln n i. Now equal to k B sum over n i ln of

n by n i, equal to, now let us take a minus sign, minus k B n i ln n i by n. Let us take, let us

multiply and divide by n, so minus k B n, n i by n, ln n i by n, equal to minus k B n P i ln P i.

And that is what is the proof.
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So we see that, whenever we, for this case this is only for one particle. However for n particle

we should write as minus n k B P i ln P i, if you have one particle, then this is the formula to

use. And if there are n particles, then this is the formula to use. So now we are going to make

use of this particular formula to understand something.

So remember, that note this P i we are talking about, probabilities, normalized probability,

that  means  for  only  one  particle  this  formula  is  used.  We can  always  use  normalized

probabilities and then it will be scaling as the number of particles increasing. For example,

whatever the value we get for 1, you multiply it by the number of particles and you get for

that many number. For example, we get entropy typically in per mole basis. Now if you have

10 moles system, it will be 10 into that, it is something like that. It is a per particle basis. And



you can, if you have got a number of particle multiplied by that 6.023 into power 23 and you

will get the entropy per mole.
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Now so I will just show you that how this particular formula p i ln p i. So we have done the

derivation starting from W and now we go back to the W. So for isolated system or systems

where energies are all equal, or let us say for degenerate system where all the energies are

same, in that case you know that probability is proportional to the energy. So if all energies

are same, then I can write instead of e, I can write simply e for all probabilities. And it will be

nothing but e to the power minus e by k B T by Q or 1 by W. Why?

Because all probabilities are same. So if there are W number of microstate possible, then the

probability of each microstate will be 1 by W, because they are all equal. And once I put now

1 by W in this particular formula, then I can write it this way, because p i is 1 by W. So 1 by

W ln 1 by W. Once I do that, I get back my k B ln W. So k B ln W is very general expression

and p i ln p i also is general where the probabilities are different but k B ln W is simply can

be used for whatever.

So this is again the postulate which essentially, so how did it all start? So we started with k B

ln W, then we said W is n factorial by n i. Factorial into factorial, all that for distinguishable

particles and from there we got back the Boltzmann statistics and from there again we got

back W when all the microstates are all equal. So it only means that if the energies are all

equal, we are going to get, we are going to simply count the number of W and that will give

us the entropy. However if energies are not equal, then we cannot just simply count the W.



We have  to  use  this  particular  formula,  because  then  the  number  of  microstates  will  be

weighted by how probable they are. And that is where the distinction comes when systems

are distributed in different levels differently.

So p i is the probability, so p i is more, then the probability of that microstate will be more to

form. That means the weights of that particular microstates will be even more. So that we

have to understand. So for example, if I buy 4 apples and 2 banana, and let us say 4 apples

each of them cost 10 rupees and banana each of them cost 5 rupees, so 4 apples is 40, 2

banana is 10, so 50. And divided by 6, so it is definitely more weighted by the apples and

then the bananas. So I can, whatever, so the probability of that is, probability of apple being

there is 4 by 6 whereas banana being there is just 2 by 6. So when you take an average of an

apple and banana, I can simply take 10 as the price of apple multiplied by 4 by 6, plus 5

multiplied by 2 by 6.

That will give rise to the value, same value that we can get by adding all of them together, 10

plus 10 plus 10 plus 10, plus plus plus 5, divided by 6. We will get the same result if we just

multiply 10 into 4 by 6 plus 5 into 2 by 6. So that is an example of weighted averaging and

weights are nothing but probabilities.
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Let me just derive that how we are getting the k B ln W. So we know that S is minus k B p i

ln p i. Now p i we know as e to the power minus beta E i or E i by k B T, e to the power

minus E i by k B T by Q, some value, some constant value which is a normalization constant,

that is P i. Now if all energies are equal, that means E1 equal to E2 equal to E3 equal to E4,



all states are equal, equal to E, then I can write P i as e to the power minus E by k B T by Q

which simply means that this is a constant term, this is a constant term and which means this

is nothing but a constant term, 1 by W.

I can always put that, I can write one more step though so that it will become clear. I can

always write that as 1 by Q into e to the power minus E by k B T or I can write 1 by W. 1 by

W here is nothing but Q into e to the power plus E by k B T. So we know that P i is 1 by W,

so now let us put that here, minus k B, 1 by W, ln 1 by W. Now when there is a minus and 1

by W, minus will become plus and it will give us 1 by W ln W. So we know that W is a

constant, so let us take out W and ln W and I will have a sum of 1 going from i to W, so

which will give me ln W multiplied by W. And W, W cancels giving me, oh, k B is also there

here, giving me k B ln W.
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So now we got k B ln W. Now let us see that how this p i which is a probability of being in

the ith state affects or helps us to understand that while the energy of a particular system

remains constant or for example, image of the universe remaining constant, entropy keeps on

increasing.  And remember we even discussed in our intro slides that  while  the energy is

conserved, the distribution of energy is not and that is an indication of increase of entropy.
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So let  us  understand  through a  simple  problem.  So remember  we discussed  about  three

particles distributed in four different energy levels and we saw that we were getting three

possible  distributions.  One is  distribution  A where the W was,  number  of W, number of

possible  distributions  were  3.  And  then  the  distribution  B,  where  number  of  possible

arrangements or number of microstates were 6. And the distribution C where the number of

microstates was 1. The total W was 10 and the entropy obtained from that was k B ln 10.

Now let us see that with these new ways of calculating the number of particles in different

levels, what kind of entropy values we get. So in order to calculate that, let us see that what is

the probability of finding particle at zeroth energy level. You see that in the distribution A,

there are two particles in the zeroth energy level. And since there are three possible ways of

doing that, so we can write as 3 into 2. There is one particle at zeroth energy level but there

are six possible Ws. So therefore that will be 6 into 1.

And there is no particle in the zeroth level in the distribution C. And how many total number

of particles are there? So as you can see there are 10 possible distributions each distribution

has three particles, so there is total 30 particles. If I calculate that, it will be 6 plus 6, 12 by 30

giving us 4 by 10. Now let us calculate the same way the probability of finding particles in

level 1. So as you can see there is no particle in distribution A but there is one particle in level

1 for distribution B and there are 6 possibilities, so 6 into 1.

And there are three particles in level 1 for distribution C and there is only one way of getting

that. So therefore we get 3 into 1. So and divided by 30 again, so we get 9 by 30 or 3 by 10.

Let  us  calculate  now probability  of  finding  particle  in  level  2  and  you  can  see  that  in



distribution B, there is a particle at level 2 and there are six possible ways of doing that, so

we will get 6 by 30 or 6 into 1 by 30 you can say, so 6 by 30 and giving us 2 by 10.

And finally let us calculate the probability of getting a particle in level 3. And you can see

that there is one particle in level 3 for distribution A which has three possibilities, so it is 3

into 1 by 30, so 3 by 30 or 1 by 10. Now first thing to notice is that the sum over P i is i going

from 0 to 3 is equal to 1. As you can see 4 by 10 plus 3 by 10 plus 2 by 10 plus 1 by 10 is

equal to 10 by 10 or 1.

Now to calculate the entropy we have to use the formula minus k B sum over P i ln P i which

means it is minus k B then 4 by 10 ln 4 by 10 plus 3 by 10 ln 3 by 10 plus 2 by 10 ln 2 by 10

plus 1 by 10 ln 1 by 10. And that is the entropy for one particle, so we should write as S by or

S by 3, n equal to 3 we know. So now let us calculate and see what is the value that we get.
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So 4 by 10 means 0.4 ln 0.4 plus 0.3 ln 0.3 plus 0.2 ln 0.2 plus 0.1 ln 0.1, we get minus 1.27

and we have to multiply that by 3 and there is a minus sign, so we have to put minus, so that

much k B we are going to get. 3 into, so 3.84 as you can see here, 3.84 is the value, 3.84 k B

is the value.
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And k B ln 10 is, so we can calculate that ln 10 is 2.3. So that is 2.3 k B. So as you can see, it

is not exactly same, it is 2.3 to 3.84 but the reason is actually that our statistics is not enough

to get exactly equal number but they are pretty close. If you have many more number of

particles, then one can get much closer accuracy. Another closer similarity between these two

number, another point you have to note that and this P i is obtained only for the most probable

distribution  because  when  you  get  this  formula  P  i  we  had  maximized  W under  some

constraints and that gave us the most probable distribution, which is in this case is B.

However if you calculate P i, it  is from only this distribution, you are going to get equal

probability for 0, 1 and 2 which may not be the right one. For example, we will get, for 0 you

will  get 1 by 3. 1 by 3 and 1 by 3 which will  not give you the same number. So these

discrepancies will be there only for the smaller number of particles, for higher statistics they

are going to be the same thing. But now you know how to calculate the entropy both from the

W, that means all possible distributions you can calculate all possibilities and get that W. Or

you can calculate the probabilities of occupying a certain states and calculate the W.
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For example, that entropy is just not, it not only can be applied to atoms and molecules with

energy, it can be applied to anything. For example,  we can talk about the probabilities or

students wearing socks. So let us say, these are the probabilities that out of 100 as students,

20 students wear white socks on a day, on a given day, 10 students wear green socks, 30

students wear blue, 30 students wear red and 10 students wear brown socks. So probabilities

of wearing socks for these students of different color is 2 by 10, 1 by 10, 3 by 10 and things

like that.

So now we can use our entropy formula in order to calculate the entropy for this one also. Let

us the number of students is 100, so 100 k B sum over p i ln p i which is 2 by 10 ln 2 by 10.

Let us forget the sum because we are summing up anyway, 1 by 10 ln 1 by 10 plus 3 by 10 ln

3 by 10 plus 1 by 10 ln 1 by 10. I am not going to do the sum but you can do that and see

what value you get.

So  the  point  is  that  one  can  in  principle  obtain  entropy  values  for  any  probabilistic

distributions,  it  need not  be just  energy. But  then how meaningful  that  will  be,  that  is  a

different question. But we can always say right that the entropy of the room is high or the

entropy of the situation is more. So basically we are using in a sense that there are more

possibilities that are happening around us. And that is the way loose way of talking about

entropy. However you know that, you should not know that they are, there is subject called

information entropy where this particular, exactly this particular formula except that k B part

is used where p i ln p i is the entropy of the information. And that is cost an entropy. So that is

very similar to this p i ln p i.
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So now let us talk about that why entropy keeps on increasing in the universe and why that is

the case. So let us say that the our energy distribution or energy of a particular system is

always say 10 and or let us say energy is 1 not 10, 1. It is not 1 unit, you can say that is just

some value 1. You can say 10 also, I think 10 will be better. So initially let us say all the 10

were in one particular place having unique probability, probability 1, that means all other

probabilities of being there will be 0. And then it created a biased distribution as this kind and

then it created more biased distribution of this kind and then it created a flat distribution of

this kind.

So now let us calculate that in all cases what will be the entropy values. For example, in this

particular case I have k B p i ln p i which is 1 ln 1 and you know ln 1 is 0, so it will give me

0. In this case I have minus k B p i ln p i, so two p i are 0, so I have only half ln half twice.



Half ln half and half ln half, so 1 ln half, so 1 ln half is basically k B ln 2. And ln 2 is how

much? k B, 0.693 k B, this particular thing. And now let us talk about this biased distribution.

So there it will be 1 by 3 ln 1 by 3 twice, so it is 2 by 3 ln 1 by 3, plus ln 1 by 6, 1 by 6 ln 1

by 6, so 2 into 1 by 6 ln 1 by 6.

So this is the formula for the this one and let us see how much you get. K B and ln 1 by 3 is,

let us do the whole calculation, 2 by 3 ln 1 by 3 and 2 by 6 ln 1 by 6, let us do the whole

calculation here. So 2 by 3 ln 1 by 3 plus 2 by 6 ln 1 by 6, so we got minus 1.32 or 1.33.

Minus 1.33 giving us plus 1.33 k B, so you see this distribution, this biased distribution has

more  entropy  than  this  biased  distribution  which  has  more  entropy  than  this  biased

distribution. So I will just write this.

Now let us calculate the flat distribution where everything is the same value and what is the

formula there? Again minus k B sum over 1 by 4 ln 1 by 4, four terms, i equal to 1 to 4, so

which is minus k B ln 1 by 4 which is plus k B ln 4. So we have to just calculate ln 4 of this

thing.
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Ln 4 is just the double of ln 2 because it is 2 square, so two times of ln 4, so 0.6 is doubled

which is 1.39 approximately. So it is 1.39 k B basically. Now you see 1.39 is larger than 1.33,

so this one the flat distribution has maximum entropy. So you see everywhere the total energy

unit has not changed, it is just that how it has distributed from this completely distributing in

place to becoming flatter. So that is what happening with our world. Initially you remember

the Big Bang, the energy is a concentrated in one dot and as the time progresses that energy is

getting distributed in everything.

And then more and more it gets distributed, more and more entropy increases because it is

just that the probabilities are getting flatter and flatter. And that is why we said that although

the energy is conserved, the distribution is not. And as long as the distribution is not going to

be flat distribution, so when the entropy will be maximum? When everywhere there will be a

equal population of energy units or energy distribution will be completely flat and that time

the entropy will be maximum.

And that is the time where our universe will come to equilibrium and you know when that

will happen. Where if that happens then every molecule will have to have the same amount of

energy and that is, that will not allow the energy concentration in one particular place like

what we see in organized system, like a human being or plants or animals or any organized

growth will be going against that particular flat distributions. So that is why I say entropy is

called the ultimate death, the because it shows us the future of the complete stillness rather.
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So now where is the use of this? Because once we know the probability, then we can use that

probability and calculate the average values of a particular property. For example, when you

talk about microscopic property like energy, there are nothing but average energy weighted

by the probability. When you talk about pressure, then it is nothing but average, then nothing

but average pressure weighted by the probability. When you talk about volume, as I said that

1 liter volume, when you say that a normal temperature and pressure, 55.5 mole of water will

have volume of 1 liter, it does not mean it will be exactly 1 liter.

It means that on an average it will be 1 liter. If you do a simulation with water, it will not be

exactly 1 liter, it will be fluctuating and that when you take an average, it will be then exactly

1 liter. And that is what we measure experimentally. So all the microscopic thermodynamic

quantity which is written on this side are nothing but average over the microstates with the

probabilities  of a  certain  state  as  a weight  function.  Just  like in  Quantum Mechanics,  in

Quantum Mechanics what we do? We calculate first the property using the operator. Once we

get the observable using an operator, then it becomes, so this is the formula of expectation

value.

Now let us say size the Eigen state or not even the Eigen state of A, what we get is that just I

do one more step here, we get sai star a sai dx, then d tau, whichever, if it is very general, let

us call it d tau. And then what we get here is sai star sai a d tau. Sai star sai is the probability

just like our p i here. And a is the property just like our E here. So you see here also what we

are essentially doing is that we are calculating the average values weighted by the probability

density sai sai star, which is nothing but this probability.



Meaning, what I am saying is that just like in Quantum Mechanics we get the expectation

value from the probability distributions, we get similarly some expectation value based on the

number of microstates and they are energy values. So that is where the connection between

molecular  thermodynamics  and classical  thermodynamics  takes  place.  So in  one line,  the

statistical thermodynamics, the average value obtained from atoms and molecules is what we

observe in classical thermodynamics and that is what is, but we are not going to go into detail

of that. You may look at other courses that are there.

For  example,  in  NPTEL itself  there is  a  course by Srabani  Taraphder  on introduction  to

molecular  thermodynamics  where  you  can  get  little  bit  more  detailed  descriptions  of

molecular thermodynamics and its applications into understanding realistic classical systems

as well. So then you can get a better idea of how to club both of them together. Here we

wanted to just give very brief outline of how to think about thermodynamics from atoms and

molecules.


