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Joule-Thomson effect (For Ideal Gases).

So, welcome to the next  module.  So we have learned till  now how to calculate  work in

constant temperature.  And today we are going to understand that how an expansion, free

expansion, whether it  will  lead to decrease in temperature or not.  Because remember we

discuss that in the free expansion case, the work that is 0. But whether the temperature will

decrease or not, that is what we are going to see today. And there was a famous experiment

by Joule, who devised an experiment in to understand whether the free expansion will lead to

a change in temperature or not and followed by another one called Joule Thomson effect.
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So  first  today  we  are  going  to  talk  about  Joule's  free  expansion  process.  So,  the  free

expansion process is designed in such a way that in, there are 2 chambers in isolated system,

so this is an isolated system, which means that total energy will be conserved or an isolated

system will not allow any heat exchange to go in or out. So there will be no exchange of heat

and initially the gas molecules are confined to one side of the chamber. Right, so this is what

is preventing it and then at some point this stopper will be removed and the gas will expand

to the full volume.



Now in that particular case, what you think will happen to the temperature? Will it decrease?

Okay. So why do you think it will decrease? Okay. So let us see now. Let us say we know

from the 1st law of thermodynamics that dU equal to dQ + dW, right. Now I said that the

system is not isolated system, so basically this whole chamber is isolated, okay, this is an

isolated chamber. Which means our dQ is going to be 0, there is no exchange of heat going in

or coming out and we know that a free expansion process dW is also 0, right.

So dU is going to be 0, now if dU is going to be 0, then do you think that temperature is

going to decrease? So this is what we are going to understand today, what is going to happen

in this particular process. So, let us now expand the dU, so again I will remind you that U we

can  expand  as  a  function  of  volume  and  temperature,  so  therefore  you  can  write  total

differential dU in terms of both V and T, dU by dV T dV + dell U by dell T V dT. 

Now since in this particular case, our total change in U is 0, we are going to put that on the

left-hand side. So 0 equal to dell U by dell V T dV. Now when I write dV, I have already used

a condition, that condition is dU is 0. dU is 0, right, we have used that condition. In order to

denote that we are using that condition, we are going to use this subscript U, that indicates

that  dV at a  constant  U, okay, + dell  U by dell  T V dT U, okay. Now we are going to

rearrange this equation, now you know that dU by, now you know the, one of the quantities

you know, so dell U by dell V T dV U + dU by dT V you know as CV, right, CV, dT U.

So, no other assumption, nothing has been used till now in this derivation. Now we are going

to rewrite this equation on the left-hand side by taking this particular quantity on the left-hand

side. So it will be - CV dTU is equal to dell U by dell V T dV U. Okay. So we are trying to

understand  that  how much  change  in  the  temperature  is  going  to  happen  if  the  volume

expands in the condition that U remains constant. Okay, that is what we are going to observe.

Now we rewrite this equation by dividing both sides by dV, we divide both sides. So - CV,

when I divide both sides, I can write that as dT by dV at a constant U is equal to dU by dV at

a constant T. Now this quantity dell T by dell V at constant U is called Joule's coefficient, that

I have mentioned here on the top you see. Joule's free expansion gives us this quantity. So,

remember the right-hand side quality, dell U by dell V at a constant T is not possible to be

obtained in experiment, because there is no way to measure internal energy.

We can see a change in enthalpy and things like that, but one cannot measure it directly.

Rather it is much more easier to revise a system in which there is no exchange of heat and



therefore U can become the, we can measure the temperature before and after expansion and

thereby you can calculate the quantity in J. And once we have J, we know the CV, we will be

able to calculate the right-hand side quantity. You will see often in thermodynamics that we

will use this kind of partial derivatives.

And often it looks like that they are there to give us pain, you know, I used to think that way.

However, the reason is that these are there to really to relieve us from the pain. Because if

you want to observe or measure certain quantities, we can always relate it to something else

and thereby we can get the same thing. Which means that in order to see that, if I change the

volume, keeping the temperature constant in an isothermal condition, how much change of U

will happen, I can get that by knowing 2 things, CV and dell T by dell V at a constant U. That

is the sole purpose of having this relation.

So, I can write now I n J, CV nJ is dell U by dell V at a constant T or nJ is -1 by CV dell U by

dell V at a constant T. So this is the, this is the quantity, if we calculate that by knowing nJ we

will know, I will remove this right-hand side, whether there will be change in temperature or

not. 
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What this is this quantity, dell U by dell V at a constant T for ideal gas. So, ideal gas we know

that U equal to 3 by2 KBT, right. So, dell U by dell V at a constant T is going to be 0, because

U does not depend on volume. So when I change the volume, if temperature is fixed, the U is

not going to change. Right, that is what this particular quantity tells us, right. That is the



temperature is same, U is going to be always same, whether you change the volume or not. If

U will be a function of volume, then only U will change, when volume is changed.

But if U is not a function of volume, then how is it  going to change? So, for ideal  gas,

therefore nJ is -1 by CV into 0 is equal to 0. So Joule's coefficient is 0 for ideal gas. Which

indicates that when we will lift the stopcock, stopper, then the gas will expand, however for

ideal gas there will be no change in temperature. So free expansion of an ideal gas does not

change the temperature. So, you understand from this, right. Now question is that will that

happen for, you know actual real gas also or not, right. And we have to understand that, right.
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So before, okay, so if you want to understand that, let us go here. Let us try to take an easier

example which the Van Der Waal's gas. P equal to RT by V - b - a by V square, we know that.

So let us keep this equation of state in mind and try to calculate the quantity that is required

to calculate the Joule's coefficient. We derived Joule's coefficient nJ as -1 by CV dell U by

dell V at a constant T, so this is what we are going to calculate, right. How we are going to do

that? Because this above equation does not give us any information about U, right, so how we

are going to do that? Any idea?

Because if I have to use this, remember what is the left-hand side, left-hand side is dell T by

dell V at a constant U, that is equal to our nJ. So, that this left-hand side is also not possible to

calculate. Because how do I get, how do we guarantee that U is going to be constant. And

here also it is difficult because we do not have a nice vision of U, we only have an equation



of  state.  You  will  learn  later  that  this  equation  of  state  is  actually  derivative  of  a

fundamentally question, that means derivative of U already. So how do we get that?

So, in order to get that, we will use some tricks. In order to do that, I am going to do some

derivations, which you will not going to understand right now, because I am skipping some

steps here. So once we learn those things, again we will do the same thing. So, let me do that

quickly. What I am going to tell you for the time being is that dell U by dell V T can be

expressed in terms of this relation. How we are arriving at this relation, you will only come to

know after  we cover  the 2nd law of  thermodynamics,  when we introduce some quantity

called entropy and Maxwells relations.

However it is important to show that how this is going to affect and therefore I am going to

just show you the relation. So for the time being, you just accept this formula as is. You are

going to learn that very easily, did not problem. So now we know that dell U by dell V T can

be expressed in terms of this relation, T dell P by dell T V - P. And we know from equation 1

how to calculate dell P by dell T. Let us calculate that, dell P by dell T V is the derivative of

the equation 1 which is R by V - b.

So therefore from equation to 2 we get dell U by dell V T is equal to T into R by V - b - P.

And P is RT by V - b + y by V square. Which is a by V square. So, therefore nJ is going to be

-1 by CV a by V square. Now you remember a was positive or negative? We have discussed

about a for helium, it was then and a lot of values, a was a positive quantity. Since a is greater

than 0, CV is greater than 0 and it V bar is obviously greater than 0 because it is a square,

your nJ is going to be less than 0.

If nJ is less than 0, what does it mean, that if V increases, T decreases. I already told you that

A denotes the strength of interaction between the particles, high are the values of a, lower the

temperature  decreases,  or  higher  the  decrease  in  temperature  will  happen.  Because  what

happens is that, physically speaking when the articles are close together, when you increase

the volume, the particles will have to move apart from each other against  the strength of

interaction. And that, the work that they will do will actually reduce the temperature of the

system, okay.

So, we can see that even for a very simple system like Van Der Waal's gas, when we put

interaction, we see that an expansion will cause decrease in temperature. And remember our

big bang theory? So, our universe is an isolated system and it expanded, so while expansion 2



things happened, one is the conversion of energy to matter, which will of course reduce the

amount of energy of the system. And a volume expansion, in which things will go far apart

from each other, which will reduce the temperature of the system.

So it is not like an adiabatic process, it is an expansion, because for an adiabatic process, you

will come to know that, we are going to talk about adiabatic process, you will come to know

that it has to push against some external pressures. But our universe is some system where

nothing is there beyond, so you can think of that as an expansion that is happening which

pulls down the temperature, just like Joule expansion process. Okay, so we see that that is

what  is  happening,  now we are going to  talk  about,  so this  is  a process that  happens at

constant internal energy.
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Now, similar  to  that,  there  is  Joule Thomson effect,  which talks  about  constant  enthalpy

process, okay. So we talked about constant energy process, now we will talk about constant

enthalpy process. So, in order to do for observe the change in temperature due to change in

pressure, so earlier there were changing in temperature due to increase in volume, or change

in value. Now we are going to talk about change in temperature due to change in pressure.

And you see that it has to be done in such a way that overall enthalpy remains constant. Just

like in earlier case, the overall energy was remaining constant.

So that is the difference between Jules expansion or Jules coefficient and Jules Thompson

coefficient. In one case U was constant, another case, H is constant. Now this device that you

see here, in fact makes the enthalpy constant. How, we are going to talk about. So let us say



our initial system is such that there are some gas particles here, there are gas particles here at

temperature T1 and pressure P1. And this is a piston that is going to be pushed and this is a

this place is a porous region, this is the porous region.

When you push the system up to this much point, all the classes will go on the other side.

And initially this piston was here and then it has gone up to this much. Is it clear now? So,

initially the gas was on the left chamber at temperature T1 and pressure P1, you push the gas

through  the  porous  membrane  to  the  other  side,  creating  different  temperature  T2  and

different pressure P2. In the process the volume became, from the one it went to 0 and in the

right-hand side the volume from 0 it went to let us say V2, Correct.

Now let us see what happens in this particular situation. Okay. Again the overall system, the

whole system is kind of isolated. So again we will use the 1st law dU is equal to dQ + dW,

but since dQ equal to 0, it is just dW. Now we have to calculate what is the work done in the

whole process. So let us say in the whole process the change in the internal energy is U and

we have to calculate the amount of work done W. So W in the 1st step, when it goes from V1

to 0, in how much, what is external pressure it is dealing with, P1, right.

So - V1, it goes from V1 to 0, so 0 - V1, okay, because final volume - initial volume. And in

the next step the external pressure is P2, because that is the final pressure that is going to be

there, so - P2 and it goes from 0 to V2. So the total work done if W1 + W2 and we can write

that as P1 + P1 V1 - P2 V2, right. And that is our delta U. Now delta U let us write that as U2

- U1 is equal to P1 V1 - P2 V2. Now they are the equation, U2 + P2 V2 is equal to U1 + P1

V1. Now is it familiar? It is enthalpy, so U2 + P2 V2 is H2 and right-hand side is H1.

So that means that enthalpy in this particular whole setup is constant. So, now once the setup

is  there,  such  that  the  whole  process  enthalpy  is  going  to  be  constant,  but  pressure  is

changing, we want to understand how much change in the temperature will take place, right.

So, for that what we are going to do is that we are going to write it here, H as a function of P

and T.
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Remember that I will just remind you again, that we can write in whichever variable we want

to, however naturally P and T are going to be important for H. So let us write the overall

thing, dell H, we are going to do the same way you can see that. dell H by dell PT dP + dell H

by dell TP dT. Now since our enthalpy is constant, so it is going to be 0 and now we are

going to indicate the P with H, in order to denote. And you know what is the dell H by dell T

P, right. What is that, dell H by dell T P, CP. So just it away right CP dTH.

Rearrange the equation, - CP dTH equal to dell H by dell PT dPH, divide both sides by dPH,

it is going to give you, okay. So what we are seeing here on the left-hand side, that how much

change in the temperature happens due to change in the pressure, when the overall process is

done at a constant enthalpy. And this is the quantity that is called Joule Thomson coefficient.

So, - CP mu is dell H by dell PT.

And - CP mu is called isothermal Jules Thomson coefficient, sometimes that is also measured

and in that case it is nothing but dell H by dell PT. That means change in the enthalpy for a

change in pressure at a constant pressure. Okay. So you can measure either U, sorry, you can

measure either mu or you can measure mu T, they are not same. Because there is CP sitting

here and CP may or may not be temperature dependent. So, you do not have to worry about

CP if you are calculating only the mu T, because then it is already taken into account. Okay.

So what you are going to calculate basically, you going to calculate the change in temperature

due to change in pressure. So often what happens is that in you know laser experiments, when

you want to have a jet cooled spectroscopy technique, where high-pressure gas comes and



suddenly it goes to a larger space, where the pressure is very low and the temperature goes

down very much. And in that very low temperature there will be formation of dimor and

Trimor. So in our Institute, Professor Alok das works on spectroscopic techniques using this

Jules Thomson effect.

So now that we know this one, we will just go back. Just remember that then mu T is dell T, I

will just compare that with our Joule coefficient here itself. Joule coefficient was nJ and nJ

was -1 by CV, instead of CP it was CV, dell instead of H, it was U, instead of P, it was V, that

is it. So U, you can see U and V are going together, H and P are going together, okay. Okay,

so the question is that in both cases, in Jules case and Joule Thomson case, both president

volume are changing, so what is the difference?

The difference is as you can see mainly is in that 1st process in Jules case, total internal

energy is constant, whereas in Jules Thomson case, total enthalpy is constant, so that is the

main difference. And the main variable that you are looking at is pressure in the case of Joule

Thomson, because you want to see as a change in pressure how it is happening. So if the

pressure remains same, even if the volume changes, you are not going to see any change. So

it is basically what you want to measure.
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And you see this is the setup in which the gas comes at a high pressure and then goes through

this particular porous region, this yellow colour and then it goes to a larger volume at a low-

pressure. Now I would like to ask you, okay, so before I ask you that one, let us write down

once more that mu is dell T by dell P H which is -1 by CP dell H by dell P at a constant T,



right. I remember that by correlating what was for Jules. If you by chance forget the formula,

you can correlate with one of them and then remember.

Now, what is the value of mu in case of ideal gas? How do you calculate that for an ideal

gas? Can you tell  me how to do that? Because CP is certainly not going to be 0, to the

positive value for ideal gas and you already know that CP value for ideal gas, CP is CV + R,

CV is C by2 R, so CP is 5 by2 R. So, we have to calculate dell H by dell PT, right. So we

know that H is equal to U + PV. So dell H by dell P at a constant temperature is dell U by dell

P at a constant temperature + P into dell V by dell P T.

Why did not I do dell P dell P, because that will be, is it correct, oh I am doing that, so + V

dell P by dell P at T. Now dell P by dell P is basically 1, so I can write that as V, so dell U by

dell P T + P dell V by dell P T + V. Now what will be the value for that at an ideal gas? So,

we have to calculate this quantity, we have to calculate this quantity and this quantity, okay,

in order to do that. So I will need a larger space, so I will go back and do that once more.
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dell H by dell P at a constant temperature for ideal gas. So, we know that H is equal to U +

PV. See, we are not remembering anything, we will be start from the scratch and do that. So

dell H by dell PT, dell U by dell P T + P dell V by dell PT + V dell P by dell P T. dell U by

dell P T + P dell V by dell PT + V. Now we have to see what is dell U by dell P T, correct. So

remember what we are doing,, like last time, dell U or rather dU can be written as, is the

function of both V and T as dell U by dell V T dV + dell U by dell T V dT.



Now I can take the derivative with respect to pressure at a constant temperature on both sides.

So dell U by dell P T is dell U by dell V T dell V by dell P T + dell U by dell P which is CV,

dell T by dell P at a constant temperature. Okay, so here is the interesting thing that comes

when I do the derivation, you see, what happens. You see that dell U by dell V T we already

know to be 0, right. So because, so therefore the whole term is going to be 0. And dell P by

dell  T  at  a  constant  T is  what,  0,  right.  Because  we  are  trying  to  take  a  derivative  of

temperature at a constant temperature.

So that means the whole term is going to be 0. So therefore just to use a different colour, this

is going to be 0. Now what I am remaining with is these 2 quantities okay. So, therefore I am

going to erase this part and then calculate that quantity.
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Now what is dell P, dell V, dell V by dell P at a constant temperature, what is that, remember?

PV equals to nRT, so therefore V equal to nRT by P, so dell V by dell P, that means I am

taking the derivative with respect to pressure at a constant temperature, nRT is fixed, into -1

by P square, correct. And what is nRT? NRT is again PV, right. So PV by P square, so - V by

P. So I am going to put that, so dell H by dell P T is equal to P into - V by P + V, which is

giving me - V + V is 0.

So which means that for an ideal gas the dual function coefficient is also going to be 0. Now

do you think that for a real gas the temperature is going to decrease or increase when you go

from high pressure to go pressure? Because you saw that when you go from low-volume to

high-volume for Van Der Wal gas, temperature decreases. What happens from high pressure



to low-pressure, will it decrease or not? Or will it increase or will it remain constant? For

ideal gas of course both will remain constant, I am talking about a real gas. And since real gas

is difficult, we can take Van Der Wal's gas as an example and try to understand what is going

to happen, right.


