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Welcome back. So we looked at in the last lecture some of the‘important mechanisms in
biological chemistry. So we are going to continue with the same theme and look further into

some of the mechanisms that are very interesting and relevant to, in biological chemistry.
So just to put
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this in perspective, we looked at this very large picture of how metabolism occurs and we
looked at some key molecules such as pyruvic acid and how
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pyruvic acid actually can, you know plays a very important roles in transferring groups.

And we looked at how alpha-keto-acids are actually, such as pyruvic acid is actually in
equilibrium with the corresponding amino acid and this transfer that can occur is catalyzed by

aminotransferases.

And we also looked at enol equivalents and, because it is not possible to generate an enolate
or it is unlikely that an enolate will be generated inside the cell. And so the cell, nature takes
care of this by making very interesting enol equivalents, so one of the enol equivalents that

we looked at was phosphoenolpyruvate and so on.

So now, in today's class
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Nature’s acyl anion equivalent

* Thiamine pyrophosphate looks quite like a nucleotide. It has two
heterocyclic rings, a pyrimidine similar to those found in DNA
and a thiazolium salt.

* This ring has been alkylated on nitrogen by the pyrimidine part
of the molecule.

* Finally, there is a pyrophosphate attached to the thiazolium salt
by an ethyl side chain.

Clayden, 2000

b

we look at acyl anion equivalents. So acyl anions are very important in many reactions that

we will, that we conduct in the organic chemistry lab.

And the way it happens in nature is through thiamine pyrophosphate. So the structure of
thiamine pyrophosphate is shown here. And what, the interesting part of the structure is that it

contains a thiazole ring,
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Nature's acyl anion equivalent

* Thiamine pyrophosphate looks quite like a nucleotide. It has two
heterocyclic rings, a pyrimidine similar to those found in DNA
and a thiazolium salt.

* This ring has been alkylated on nitrogen by the pyrimidine part
of the molecule.

* Finally, there is a pyrophosphate attached to the thiazolium salt
by an ethyl side chain.
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And this thiazole ring is actually positively charged because this nitrogen has

Ok.
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Nature’s acyl anion equivalent

* Thiamine pyrophosphate looks quite like a nucleotide. It has two
heterocyclic rings, a pyrimidine similar to those found in DNA
and a thiazolium salt.

* This ring has been alkylated on nitrogen by the pyrimidine part
of the molecule.

* Finally, there is a pyrophosphate attached to the thiazolium salt
by an ethyl side chain.
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four bonds to it. And so this provides a very interesting chemistrfthat we will look at soon.

But this thiamine pyrophosphate as the name suggests, contains pyrophosphate here
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Nature’s acyl anion equivalent

* Thiamine pyrophosphate looks quite like a nucleotide. It has two
heterocyclic rings, a pyrimidine similar to those found in DNA
and a thiazolium salt.

* This ring has been alkylated on nitrogen by the pyrimidine part
of the molecule.

* Finally, there is a pyrophosphate attached to the thiazolium salt
by an ethyl side chain.
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as shown here and it also contains the pyrimidine
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* Thiamine pyrophosphate looks quite like a nucleotide. It has two

heterocyclic rings, a pyrimidine similar to those found in DNA
and a thiazolium salt.

* This ring has been alkylated on nitrogen by the pyrimidine part
of the molecule.

* Finally, there is a pyrophosphate attached to the thiazolium salt

by an ethyl side chain. ‘
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ring over here.

And, so this together this molecule plays a very important role in nature.
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« The key part of the molecule for reactivity is the thiazolium salt
in the middle.

* The proton between the N and S atoms can be removed by quite
weak bases to form an ylid
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So the key part of this molecule is the thiazolium salt which is shown here in the middle. So
here is
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* The key part of the molecule for reactivity is the thiazolium salt
in the middle.

* The proton between the N and S atoms can be removed by quite
weak bases to form an ylid
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a proton or a hydrogen which is next to this positively charged nitro
deprotonated and form

geﬁ species which can be
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« The key part of the molecule for reactivity is the thiazolium salt
in the middle.

* The proton between the N and S atoms can be removed by quite
weak bases to form an ylid
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So to put this in perspective if you imagine a ketone which has an alpha hydrogen next to it,
if you add a strong base,

a carbanion.
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« The key part of the molecule for reactivity is the thiazolium salt
in the middle.

* The proton between the N and S atoms can be removed by quite
weak bases to form an ylid
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then you would expect that a carbanion is
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« The key part of the molecule for reactivity is the thiazolium salt
in the middle.

* The proton between the N and S atoms can be removed by quite
weak bases to form an ylid
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produced, Ok. This carbanion is in resonance with the
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enolate form. So here the proton between the nitrogen sulphur at ms and it can be removed
and it forms what is known as an ylid.
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« The key part of the molecule for reactivity is the thiazolium salt
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Ok.

So ylid is something that we have encountered previously in organic chemistry courses when
we are looking at a Wittig reaction.
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* The anion is in an sp* orbital, and it adds to the reactive carbonyl
group of pyruvate.
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So this ylid is basically an anion which is in the sp® orbital and it adds to the reactive

carbonyl group of pyruvate. So once you produce this carbanion,
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* The anion is in an sp* orbital, and it adds to the reactive carbonyl
group of pyruvate.
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this carbanion can then react with the carbonyl
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+ The anion is in an sp* orbital, and it adds to the reactive carbonyl
group of pyruvate.
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of pyruvate to form a carbon carbon bond.

And
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* Now the carboxylate can be lost from the former pyruvate as the
positively charged imine in the thiamine molecule provides a
perfect electron sink to take away the electrons from the C-C
bond that must be broken..
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now the carboxylate ion can be lost from the former pyruvate as positively charged imine in

the thiamine molecule which provides a perfect electron sink to take away the electrons. So
recall we had a very similar situation in the positively charged NAD plus, right where you

had positively charged nitrogen which was the electron sink.

So similarly here you can push electrons from the O minus to produce carbon dioxide.
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* Now the carboxylate can be lost from the former pyruvate as the
positively charged imine in the thiamine molecule provides a
perfect electron sink to take away the electrons from the C-C
bond that must be broken.
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This carbon carbon bond is broken and you end up with this nitrogen as the electron
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* Now the carboxylate can be lost from the former pyruvate as the
positively charged imine in the thiamine molecule provides a
perfect electron sink to take away the electrons from the C-C
bond that must be broken.
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sink and you produce nitrogen with three bonds which is neutral Ok. So therefore the

formation of carbon dioxide forms a very important driving force in this reaction.
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* This new intermediate contains a new and soutce
strange C=C double bond. It has OH, N, and S s
substituents making it very electron-rich. NN

* As the nitrogen (s the most electron-donating
you can view it as an enamine, and it attacks
the disulfide functional group of lipoic acid, the
other cofactor in the reaction.
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This new intermediate contains a new and strange carbon carbon double bond, Ok. So this

carbon carbon double bond has on it an oxygen,
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a sulphur, three electronegative atoms sitting on it, Ok. So this makes this double bond quite
electron-rich and at this point this electron-rich double bond can react with disulphide
functionality of lipoic acid, Ok.

So to just recall or to understand what lipoic acid, lipoic acid structure is
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shown here which has this disulfide bond. And so this C double bond C which is electron-

rich can react with the disulfide and produce a carbon sulphur




(Refer Slide Time: 05:12)

+ This new intermediate contains a new and
strange C=C double bond. It has OH, N, and S
substituents making it very electron-rich.

* As the nitrogen (s the most electron-donating
you can view it as an enamine, and it attacks
the disulfide functional group of lipoic acid, the
other cofactor in the reaction.

NH, @ Me Ho, Me
o NHz
® A
/k/J ¥ R —— N‘ ) i 5 ®
M N W \ ()\ 7 e)\/
\/opp My N W \

(PP

Clayden, 2000
bond and it breaks the disulfide to produce a
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Now if you see here, this thiamine
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regained its positive charge.
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* Now the thiamine can be expelled using the green OH group.

* The leaving group is again the ylid of thiamine, which functions as
a catalyst.
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So now this thiamine which has a positive charge on it can agaln react to produce the

carbanion which is originally reacting with pyruvic acid. So here is how that mechanism
happens. So you can have a
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* Now the thiamine can be expelled using the green OH group.
* The leaving group is again the ylid of thiamine, which functions as
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basic residue in an amino acid to come and pick up this proton
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* Now the thiamine can be expelled using the green OH group.
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from this alcohol which then generates the ketone as shown here.
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* The leaving group is again the ylid of thiamine, which functions as
a catalyst.
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And this carbon carbon bond breaks and regenerates the carbanion.
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* Now the thiamine can be expelled using the green OH group.

* The leaving group is again the ylid of thiamine, which functions as
a catalyst.
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So this is the ylid of thiamine which functions in very crucial way to transfer an acetyl group.



(Refer Slide Time: 06:00)
* The product is a thiol ester and so can exchange with CoASH in
a simple ester exchange reaction.

* This is a nucleophilic attack on the carbonyl group and will
release the reduced form of lipoic acid.
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So the product is a thiol ester and so it can exchange with a CoASH in the simple ester

exchange reaction.

So you see here that COASH
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* The product is a thiol ester and so can exchange with CoASH in
a simple ester exchange reaction.

* This is a nucleophilic attack on the carbonyl group and will
release the reduced form of lipoic acid.
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as we have looked at previously can come and react with this acetyl group and then

regenerate this
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a simple ester exchange reaction.

* This is a nucleophilic attack on the carbonyl group and will
release the reduced form of lipoic acid.
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dithiol intermediate which is basically the reduced form of lipoic ézid. Now this acetyl CoA
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* The product is a thiol ester and so can exchange with CoASH in
a simple ester exchange reaction.

* This is a nucleophilic attack on the carbonyl group and will
release the reduced form of lipoic acid.
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species is produced and the dithiol can be oxidized to produce the disulfide,
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« All that is necessary to complete the cycle is the oxidation of the
dithiol back to the disulfide.

* This is such an easy reaction to do that it would occur in air

anyway but it is carrvied out in nature by FAD, a close relative of
NAD+.

°
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Ok and which basically regenerates the lipoic acid.

And this oxidation can, is very facile and it would occur in air but in nature it is carried out
by another cofactor known as FAD which is flavin adenine dinucleotide which is a very close
relative of NAD plus.
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* Thiamine pyrophosphate also catalyses reactions of x-keto-acids
other than pyruvic acid.

* One such sequence leads through some remarkable chemistry to

the biosynthesis of the branched chain amino acids valine and
isoleucine.
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So thiamine pyrophosphate also catalyzes reaction of alpha-keto-acids other than pyruvic
acid.

So if you take pyruvate and react it in the presence of thiamine pyrophosphate and NADPH
you can actually form valine and isoleucine.
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* Thiamine pyrophosphate also catalyses reactions of x-keto-acids
other than pyruvic acid.

* One such sequence leads through some remarkable chemistry to
the biosynthesis of the branched chain amino acids valine and
isoleucine.

Clayden, 2000
Now let us look at this remarkable chemistry in the biosynthesis of branched chain amino

acids valine and isoleucine.
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alkyl shifts in pinacol-like rearrangements
* Let us briefly look at the pinacol rearrangement...

HO OH 0
[ H,S0,

pinacol Me—7 | “Me —— >

Clayden, 2000 e
So the remarkable aspect of this chemistry is that it involves, it involves a 1,2- alkyl shift

which is resembling a pinacol like rearrangement. So in order for us to understand pinacol
like rearrangement let us go back and look a little bit in detail what this rearrangement is.

So pinacol is basically this group here
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* The remarkable aspect of this chemistry is that it involves 1,2-
alkyl shifts in pinacol-like rearrangements
* Let us briefly look at the pinacol rearrangement...
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which is shown here where there is a hydroxyl group on the 2 and 3 positions. So there are
flanking hydroxyl groups which in the presence of
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* The remarkable aspect of this chemistry is that it involves 1,2-
alkyl shifts in pinacol-like rearrangements

* Let us briefly look at the pinacol rearrangement...
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an acid such as sulphuric acid gives you what is known as a



(Refer Slide Time: 07:57)

+ The remarkable aspect of this chemistry is that it involves 1,2-
alkyl shifts in pinacol-like rearrangements

+ Let us briefly look at the pinacol rearrangement...

Clayden, 2000
pinacolone, Ok which is basically a ketone.

So where, if you number the carbons here, here is 1, 2, 3 and 4,
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+ The remarkable aspect of this chemistry is that it involves 1,2-
alkyl shifts in pinacol-like rearrangements

+ Let us briefly look at the pinacol rearrangement...
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so the carbon here is 1, 2, 3 and 4 and so you form a ketone on carbon 2 and the original
alcohol that was present in carbon 2 has now gone and carbon 3 which has an alcohol is also
now going to be occupied by a methyl group. So this is known as the pinacol pinacolone

rearrangement. And now we shall look at the mechanism of this reaction.
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* Under acidic conditions, the protonation of the hydroxyl group is
likely, which can lead to the formation of a carbocation...
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So in the presence of acid it is quite likely that this alcohol will undergo
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* Under acidic conditions, the protonation of the hydroxyl group is
likely, which can lead to the formation of a carbocation...
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protonation. So once it undergoes protonation
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* Under acidic conditions, the protonation of the hydroxyl group is
likely, which can lead to the formation of a carbocation...
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it is going to perhaps loose water to generate a carbocation,

&
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* Under acidic conditions, the protonation of the hydroxyl group is
likely, which can lead to the formation of a carbocation...
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Ok. So this carbocation as we know is going to have an empty
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* Under acidic conditions, the protonation of the hydroxyl group is
likely, which can lead to the formation of a carbocation...
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p orbital which can facilitate this rearrangement or which can act asa place where this new

carbon carbon bond is going to
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* Carbocations rearrange by alkyl shifts to get as stable as they
can be—but this carbocation is already tertiary, and there is no
ring strain, so why should it rearrange?

« Well, here we have another source of electrons to stabilize the
carbocation: lone pairs on an oxygen atom.
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/Me — Me ——>
Me ’\

Clayden, 2000

§

form.

So what happens is that the lone pair on the oxygen then comes in and this carbon methyl
bond breaks
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* Carbocations rearvange by alkyl shifts to get as stable as they
can be—but this carbocation is already tertiary, and there is no
ring strain, so why should it rearrange?

« Well, here we have another source of electrons to stabilize the
carbocation: lone pairs on an oxygen atom.
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and forms a new carbon carbon bond with the adjacent carbon and you form a protonated

carbonyl
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* Carbocations rearrange by alkyl shifts to get as stable as they
can be—but this carbocation is already tertiary, and there is no
ring strain, so why should it rearrange?

+ Well, here we have another source of electrons to stabilize the
carbocation: lone pairs on an oxygen atom.

methyl loss of a proton gives
migration a stable ketone 4
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species as shown here.

And loss of this proton gives you the ketone



(Refer Slide Time: 09:22)

+ Carbocations rearrange by alkyl shifts to get as stable as they
can be—but this carbocation is already tertiary, and there is no
ring strain, so why should it rearrange?

« Well, here we have another source of electrons to stabilize the
carbocation: lone pairs on an oxygen atom.

loss of a proton gives
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a stable ketone

Bir == 3> HOP mi graLm

" Me~ p

Me  Me

Clayden, 2000

which is pinacolone. So carbocations are typically rearranged by Valkyl shifts. But this

carbocation is already in the tertiary form and so there is no need for it to rearrange.

So the reason why this rearranges is that the lone pair on oxygen plays an important role. So

since the lone pair on oxygen can now move in and form a stable ketone, this is a, this

constitutes a driving force for this reaction.
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+ Oxygen is very good at stabilizing a positive charge on an
adjacent atom, and somewhat less good at stabilizing a positive
charge two atoms away.

* By rearranging, the first-formed carbocation gets the positive
charge into a position where the oxygen can stabilize it, and loss
of a proton from oxygen then gives a stable ketone.
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Also oxygen is very good at stabilizing a positive charge on an adjacent atom, and somewhat

less good at stabilizing a positive charge two carbons away. So by rearranging the first

formed carbocation which is here
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* Oxygen is very good at stabilizing a positive charge on an
adjacent atom, and somewhat less good at stabilizing a positive
charge two atoms away.

* By rearranging, the first-formed carbocation gets the positive
charge into a position where the oxygen can stabilize it, and loss
of a proton from oxygen then gives a stable ketone.
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Ok gets the positive charge into a position where oxygen can stabilize it and loss of a proton

from oxygen then gives a stable ketone.
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So let us look at an example here of this pinacol pinacolone rearrangement and here is a, the

pinacol type
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structure with two 5-membered
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rings and this rearranges and gives you
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this product here. So the mechanism that we would propose would be protonation of this OH

to give
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you OH; plus.

And subsequently the rearrangement or the shift of this carbon carbon
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bond here will give you a spirocyclic system. So a very useful tip in solving such
rearrangement mechanisms is to number the carbons. So if we are able to number the carbons

correctly then we can keep track of which carbon ends up where.

So if you number, if you see that

(Refer Slide Time: 11:02)
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this is carbon number 1 and this
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is carbon number 1, if you keep track of it then you know that the céfbon number 1 which has

an alcohol initially ends up with a ketone. And the bond

(Refer Slide Time: 11:14)
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Recall...

+ The sequence of steps to prepare the C=C..
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So now just to recall or put it in perspective of what we are looking at in thiamine, so
thiamine forms a carbanion which is shown here
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Recall...

* The sequence of steps to prepare the C=C..
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and this carbanion reacts with pyruvate to give you this alcohol here.
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The carboxylate then undergoes decarboxylation to produce this enol shown here.
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Recall...

* The sequence of steps to prepare the C=C..

o N4 3 ";;
Y ’”/)
And as we discussed this enol is a very interesting enol because it has 3 electronegative atoms
on it. And it can then serve to do very interesting
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* The sequence starts as before and we will pick it up after the
addition and decarboxylation of pyruvate...
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reactions. So the sequence of reactions starts now.

So this enol reacts with the ketone or the alpha-keto-carboxylic acid and then it forms an
intermediate which is exactly
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* The sequence starts as before and we will pick it up after the
addition and decarboxylation of pyruvate...
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identical to the pinacol type reaction. So
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+ Decomposition of this product with the release of the thiazolium
ylid also releases the product of coupling between the two keto-
acids: a 1-hydroxy-2-keto-acid

» Thiazolium ylid is free to catalyse the next round of the reaction.
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here the decomposition of this product with the release of thiazolium ylid can occur.

It also releases the product of a coupling reaction between two keto acids, that is it forms a 1-
hydroxyl-2-keto acid. So the thiazolium ylid is now free to catalyze the next round of

reactions.
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+ The hydroxy-keto-acid is now primed for rearrangement.

+ The migration of the group R is pushed by the removal of a proton
from the OH group and pulled by the electron-accepting power of
the keto group.

* Notice that the group R (Me or Et) migrates in preference to CO,H.
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So the hydroxy keto acid is now primed for the rearrangement.

So the migration of the R group is pushed by the removal of a proton from hydroxyl group,

Ok. So you can think about this enzyme with the basic residue here coming and picking up



(Refer Slide Time: 12:50)

+ The hydroxy-keto-acid is now primed for rearrangement.

+ The migration of the group R is pushed by the removal of a proton

from the OH group and pulled by the electron-accepting power of
the keto group.

* Notice that the group R (Me or Et) migrates in preference to CO,H.
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this proton and then this R moves here

(Refer Slide Time: 12:53)

+ The hydroxy-keto-acid is now primed for rearrangement.

* The migration of the group R is pushed by the removal of a proton
from the OH group and pulled by the electron-accepting power of
the keto group.

* Notice that the group R (Me or Et) migrates in preference to CO,H.
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to, and reacts with the ketone and gives you the product.

Notice that the R group which is methyl or ethyl migrates in preference to the carboxylic
acid.
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+ Usually, the group that is better able to accommodate the
positive charge migrates..

* Here, the enzyme plays a major role in determining migration
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So usually the group that is better able to accommodate the positive éharge migrates. So here

again the enzyme plays a major role in determining migration.

(Refer Slide Time: 13:17)

+ Control in this reaction is likely to be exerted stereoelectronically
by the enzyme as it was in the pyridoxal reactions above.

+ Since the C-R bond is held parallel to the p orbitals of the
ketone, R migration occurs, but if the CO,H group were to be
held parallel to the p orbitals of the ketone, decarboxylation
would occur.
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So control in this reaction is likely exerted stereoelectronically by the enzyme as it was done

in the pyridoxal reactions which we discussed previously. Since the carbon R bond is held
parallel to the p orbitals of the ketone R migration occurs. But if the carboxylic acid were to

be held parallel to the p orbital then decarboxylation would occur.

So, which is what we saw in the previous case, in the case of the NAD reaction.
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* Asimple reduction with NADPH converts the ketone into an
alcohol and prepares the way for a second rearrangement.
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So simple reduction with NADPH converts the ketone to an alcohol and prepares the way for

a second rearrangement. So when this reduction occurs then you end up with the
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* Asimple reduction with NADPH converts the ketone into an
alcohol and prepares the way for a second rearrangement.
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dihydroxy compound as shown here.
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* The second rearrangement is even more like a pinacol
rearrangement because the starting material is a 1,2-diol.

* The tertiary alcohol is protonated and leaves, and again the
CO,H group does not migrate even though the alternative is
merely hydride.
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The second rearrangement is even more like a pinacol rearrangement because the starting
material is a 1,2-diol. So the tertiary alcohol is protonated and leaves and again the carboxylic
acid does not migrate even though the alternative is merely hydride, Ok. So here you again

have

(Refer Slide Time: 14:23)
* The second rearrangement is even more like a pinacol
rearrangement because the starting material is a 1,2-diol.

* The tertiary alcohol is protonated and leaves, and again the
CO,H group does not migrate even though the alternative is
merely hydride.
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a shift of this
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* The second rearrangement is even more like a pinacol
rearrangement because the starting material is a 1,2-diol.

* The tertiary alcohol is protonated and leaves, and again the
CO,H group does not migrate even though the alternative is
merely hydride.
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carbon hydrogen hydride here to kick out
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* The second rearrangement is even more like a pinacol
rearrangement because the starting material is a 1,2-diol.

* The tertiary alcohol is protonated and leaves, and again the
CO,H group does not migrate even though the alternative is
merely hydride.
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hydroxide ion to give you the product as shown here.
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* Finally, a pyridoxal transamination converts the two keto-acids
stereospecifically to the corvesponding amino acids, valine (R =
Me) and isoleucine (R = Et).

* The donor amino acid is probably glutamate—it usually is in
amino acid synthesis.
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Finally a pyridoxal transamination converts the two keto acids stereospecifically to the

corresponding amino acids. So where R is methyl it becomes valine, and when R is ethyl it
becomes isoleucine. So the donor amino acid is probably glutamate and it usually is in the

amino acid synthesis. So this

(Refer Slide Time: 14:54)

* Finally, a pyridoxal transamination converts the two keto-acids
stereospecifically to the corresponding amino acids, valine (R =
Me) and isoleucine (R = Et).

* The donor amino acid is probably glutamate—it usually is in
amino acid synthesis.
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enzyme catalysed pinacol rearrangement gives you the final produ“ct
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* Finally, a pyridoxal transamination converts the two keto-acids
stereospecifically to the corvesponding amino acids, valine (R =
Me) and isoleucine (R = Et).

+ The donor amino acid is probably glutamate—it usually is in
amino acid synthesis.
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which is valine or isoleucine.

0
H
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Carvying carbon dioxide

* You would not expect gaseous CO, to be available inside a
cell: instead CO, 1s carvied around as a covalent compound
with another coenzyme— biotin.
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The next topic that we will look at is carrying carbon dioxide. So we would not expect

gaseous carbon dioxide to be available inside a cell. Instead CO; is carried out as a covalent

molecule by another coenzyme known as biotin. So here is a structure of biotin and
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Carvying carbon dioxide

* You would not expect gaseous CO, to be available inside a
cell: instead CO, is carvied around as a covalent compound

with another coenzyme— biotin.
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it has this thioether which is in a 5-membered ring and it also has a urea functional group on
it.

And this can react with carbon dioxide to produce

(Refer Slide Time: 15:35)

Carvying carbon dioxide

* You would not expect gaseous CO, to be available inside a
cell: instead CO, is carvied around as a covalent compound
with another coenzyme— biotin.

Clayden, 2000
a species such as this.



(Refer Slide Time: 15:37)

* Biotin has two fused five-membered heterocyclic rings.

+ The lower is a cyclic sulfide and has a long side chain ending in a
carboxylic acid for attachment to a lysine residue of a protein

* The upper ring is a urea—it has a carbonyl group flanked by two
nitrogen atoms.

+ It s this ring that reversibly captures CO,, on the nitrogen atom
opposite the long side chain.

* The attachment to the enzyme as a lysine amide gives it an
exceptionally long flexible chain and allows it to deliver CO,
wherever it's needed.
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So biotin has two fused 5-member rings, heterocyclic rings. The lower is a cyclic sulfide and

has a long side chain ending up in a carboxylic acid. And so this helps with
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* Biotin has two fused five-membered heterocyclic rings.

* The lower is a cyclic sulfide and has a long side chain ending in a
carboxylic acid for attachment to a lysine residue of a protein

» The upper ring is a urea—it has a carbonyl group flanked by two
nitrogen atoms.

» It s this ring that reversibly captures CO,, on the nitrogen atom
opposite the long side chain.

* The attachment to the enzyme as a lysine amide gives it an
exceptionally long flexible chain and allows it to deliver CO,
wherever it's needed.

Clayden, 2000
attaching itself to lysine residues of a protein.

The upper ring is a urea and it has a carbonyl group that is flanked by two nitrogens. It is this
ring that reversibly captures CO, on the nitrogen atom opposite the long side chain. The
attachment of the enzyme as a lysine amide gives it an exceptionally long flexible chain and

allows it to deliver CO, whenever it is needed.
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* One of the important points at which CO, enters as a reagent
carried by biotin is in fatty acid biosynthesis where CO, is
transferred to the enol of acetyl CoA.

A magnesium(ll) ion is also required and we may imagine the
reaction as a nucleophilic attack of the enol on the magnesium
salt of carboxybiotin.
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One of the important points at which CO, enters as a reagent carried by biotin is in the fatty

acid biosynthesis where CO, is transferred from a, to the enol of acetyl CoA. We have

already looked at the major aspects of the structure and reaction of acetyl CoA.

But here a magnesium ion is also required and one can imagine the reaction as a nucleophilic

attack of the enol on the magnesium salt of carboxybiotin.

So what we would expect is that magnesium would form

(Refer Slide Time: 16:48)

* One of the important points at which CO, enters as a reagent
carried by biotin is in fatty acid biosynthesis where CO, is
transferred to the enol of acetyl CoA.

+ A magnesium(ll) ion is also required and we may imagine the
reaction as a nucleophilic attack of the enol on the magnesium
salt of carboxybiotin.
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some sort of a chelating arrangement as shown here and then we just looked at acetyl CoA

being an excellent enol transferring group and so you can form, this is the enol
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* One of the important points at which CO, enters as a reagent
carvied by biotin is in fatty acid biosynthesis where CO, is
transferred to the enol of acetyl CoA.

A magnesium(ll) ion s also required and we may imagine the
reaction as a nucleophilic attack of the enol on the magnesium
salt of carboxybiotin.

Clayden, 2000 7
of acetyl Co A which then reacts with this carbon dioxide and produces
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* One of the important points at which CO, enters as a reagent
carried by biotin is in fatty acid biosynthesis where CO, is
transferred to the enol of acetyl CoA.

A magnesium(Il) ion is also required and we may imagine the
reaction as a nucleophilic attack of the enol on the magnesium
salt of carboxybiotin.
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this type of a product.
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The shikimic acid pathway

It is responsible for the biosynthesis of a
large number of compounds, particularly
in plants.

Most important for us is the biosynthesis
of the aromatic amino acids Phe
(phenylalanine), Tyr (tyrosine), and Trp
é'ryptophan).

These are ‘essential’ amino acids for
humans—we have to have them in our
diet as we cannot make them ourselves.

We get them from plants and
MiCroorganisms.
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Now let us look at a very important pathway which is the shi‘i<imic acid pathway. This

pathway is responsible for the biosynthesis of a large number of compounds. And it is very

important in plants. Most importantly for us is the biosynthesis of aromatic amino acids

which are phenylalanine, tyrosine and tryptophan whose structures are shown here.

These are classified as essential amino acids and we have to have them in our diet as we

cannot make them ourselves. So we get them from plants and microorganisms.
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+ So how do plants make aromatic rings?

* Aclue to the chemistry involved comes from the structure of
caffeyl quinic acid, a compound that is present in instant coffee

in some quantity.

« It is usually about 13% of the soluble solids from coffee beans.
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So how do plant, plants make these aromatic rings? So clue to this ‘tructure, to this chemistry

comes from the structure of caffeyl quinic acid which is a compound that is present in instant

coffee in some quantity.
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* S0 how do plants make aromatic rings?

* A clue to the chemistry involved comes from the structure of
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It is about 13 percent of soluble
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* S0 how do plants make aromatic rings?

* A clue to the chemistry involved comes from the structure of
caffeyl quinic acid, a compound that is present in instant coffee
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solids from coffee beans. So here is a structure of caffeyl quinic acid. It is have this very nice
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* S0 how do plants make aromatic rings?

* A clue to the chemistry involved comes from the structure of
caffeyl quinic acid, a compound that is present in instant coffee
in some quantity. P ——

« It is usually about 13% of the soluble solids from coffee beans.
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sugar unit here or a carbosugar unit here and it has this
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* S0 how do plants make aromatic rings?

* A clue to the chemistry involved comes from the structure of
caffeyl quinic acid, a compound that is present in instant coffee
in Some quantity. ———

« It is usually about 13% of the soluble solids from coffee beans.
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dihydroxy benzene ring which is attached to alpha beta unsaturated ester.
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* This ester has two six-membered rings—one aromatic and one
rather like the sugar alcohol..

+ Dehydration (losing three molecules of water) of a cyclohexane
triol and the saturated ring in caffeyl quinic acid would be a
good way to make an aromatic ring.

* [t is now known that both rings come from the same
intermediate, shikimic acid.
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So this ester has two six-membered rings, one aromatic and one rather like a sugar alcohol.

So you can imagine that dehydration, that is losing 3 molecules of water from this species is

going to give you a

(Refer Slide Time: 18:30)
« This ester has two six-membered rings—one aromatic and one
rather like the sugar alcohol..

+ Dehydration (losing three molecules of water) of a cyclohexane
triol and the saturated ring in caffeyl quinic acid would be a
good way to make an aromatic ring.

* [t is now known that both rings come from the same
intermediate, shikimic acid.
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caffeic acid. It is now known that both rings come from the same intermediate which is

shikimic acid whose structure is shown here.
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* This ester has two six-membered rings—one aromatic and one
rather like the sugar alcohol..

. Dehﬁdmtiom (losing three molecules of water) of a cyclohexane
triol and the saturated ring in caffeyl quinic acid would be a
good way to make an aromatic ring.

+ It is now known that both rings come from the same
intermediate, shikimic acid.
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So we shall now look at the biosynthesis of shikimic acid or conversion of shikimic acid to an

aromatic ring.

(Refer Slide Time: 18:45)

« This key intermediate has given its name to Nature’s general
route to aromatic compounds and many other related six-
membered ring compounds: the shikimic acid pathway.

+ This pathway contains some of the most interesting reactions
(from a chemist’s point of view) in biology.

* It starts with an aldol reaction between phosphoenol pyruvate as
the nucleophilic enol component and the C4 sugar erythrose 4-
phosphate as the electrophilic aldehyde.
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So the key intermediate has given its name to nature's general route to aromatic compounds

and many others related six-membered rings which is called the shikimic acid pathway. This
pathway contains some of the most interesting reactions especially from a chemist's

standpoint in biology.

It starts with a very interesting aldol reaction between a phoshoenolpyruvate which we have
looked at previously as the nucleophilic enol component and a C4 sugar, erythrose-4-

phosphate as the electrophilic aldehyde.



So here is the electrophilic aldehyde
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* This key intermediate has given its name to Nature’s general
route to aromatic compounds and many other related six-
membered ring compounds: the shikimic acid pathway.

+ This pathway contains some of the most interesting reactions
(from a chemist’s point of view) in biology.

+ It starts with an aldol reaction between phosphoenol pyruvate as
the nucleophilic enol component and the C4 sugar erythrose 4-
phosphate as the electrophilic aldehyde.
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which comes from erythrose-4-phosphate and here is the
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« This key intermediate has given its name to Nature’s general
route to aromatic compounds and many other related six-
membered ring compounds: the shikimic acid pathway.

+ This pathway contains some of the most interesting reactions
(from a chemist’s point of view) in biology.
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phoshoenolpyruvate equivalent. And now you can imagine an aldol reaction that can, that

occurs which gives you this product.

And now this can subsequently break to give, or can be hydrolyzed by water to give you

inorganic phosphate and give you the ketone. So once it gives you this ketone this

intermediate has the right number of carbons for shikimic acid and the next stage is a

cyclization reaction. So here the cyclization reaction gives you this
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* Hydrolysis of the phosphate releases the aldol product, a C7 «-
keto-acid with one new stereogenic centre, which is in
equilibrium with a hemiacetal, just like a sugar.

* This intermediate has the right number of carbon atoms for
shikimic acid and the next stage is a cyclization.
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intermediate as shown here.
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* If we redraw the C7 &-keto-acid in the right shape for
cyclization we can see what is needed.

* The green arrow shows only which bond needs to be formed
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Now if we redraw this C7 alpha-keto-acid in the right shape for cyclization we can see what

is needed. So here is the, the bond that we need to



(Refer Slide Time: 20:12)

« If we redraw the C7 -keto-acid in the right shape for
cyclization we can see what is needed.

* The green arrow shows only which bond needs to be formed

cozu Ho, £oaH
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form and this can happen

(Refer Slide Time: 20:15)

* This reaction looks like an aldol reaction too and there is an
obvious route to the required enol by elimination of phosphate.

* This would requive the removal of a proton (green in the
diagram) that is not at all acidic.

COH CO;H HO CO;H
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in the following manner. This reaction looks like an aldol reaction too but there is an obvious

route to the required enol by the elimination of the phosphate.

This would require removal of a proton which is here
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o This reaction looks like an aldol reaction too and there is an
obvious route to the required enol by elimination of phosphate.

* This would requive the removal of a proton (green in the
diagram) that is not at all acidic.
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from this molecule but this is not at all acidic, right. So you can imagine that it can go
through an E2 process

(Refer Slide Time: 20:37)

* This reaction looks like an aldol reaction too and there is an
obvious route to the required enol by elimination of phosphate.

* This would requive the removal of a proton (green in the
diagram) that is not at all acidic.
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wherein this proton is lost and give you this enol which
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* This reaction looks like an aldol reaction too and there is an
obvious route to the required enol by elimination of phosphate.

* This would requive the removal of a proton (green in the
diagram) that is not at all acidic.

HO COzﬂ
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then can react with the ketone. But since this hydrogen is not at all acidic, nature adopts a

very interesting route to carry out this reaction. Let us look at that now.

(Refer Slide Time: 20:51)
* The problem can be avoided if the hydroxyl group at C5 is first
oxidized to a ketone (NAD* is the oxidant).

* Then the green proton is much more acidic, and the elimination
becomes an E1cB reaction, similar to the one in the synthesis of
PEP.

 The ketone must be reduced back to the alcohol afterwards but
Nature can deal with that easily.
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So the problem is avoided if the hydroxyl group at C5 is first oxidized to the ketone. So we

have already looked at NAD plus
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* The problem can be avoided if the hydroxyl group at C5 is first
oxidized to a ketone (NAD* is the oxidant).

* Then the green proton is much more acidic, and the elimination
becomes an E1cB reaction, similar to the one in the synthesis of
PEP.

 The ketone must be reduced back to the alcohol afterwards but
Nature can deal with that easily.
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can be the oxidant. So what we are doing here is that this hydrogen

(Refer Slide Time: 21:04)
* The problem can be avoided if the hydroxyl group at C5 is first
oxidized to a ketone (NAD is the oxidant).

* Then the green proton is much more acidic, and the elimination
becomes an E1cB reaction, similar to the one in the synthesis of
FER.

+ The ketone must be reduced back to the alcohol afterwards but
Nature can deal with that easily.
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shown here which was previously not acidic
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* The problem can be avoided if the hydroxyl group at C5 is first
oxidized to a ketone (NAD* is the oxidant).

* Then the green proton is much more acidic, and the elimination
becomes an E1cB reaction, similar to the one in the synthesis of
PEP.

+ The ketone must be reduced back to the alcohol afterwards but
Nature can deal with that easily.

CO;H COoH FoH
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is now adjacent to a ketone and now this pushes down the pKa substantially and makes it

acidic enough.

Now if it undergoes enolization,

(Refer Slide Time: 21:17)
* The problem can be avoided if the hydroxyl group at C5 is first
oxidized to a ketone (NAD" is the oxidant).

* Then the green proton is much more acidic, and the elimination
becomes an E1cB reaction, similar to the one in the synthesis of
FEP.

 The ketone must be reduced back to the alcohol afterwards but
Nature can deal with that easily.

CO;H CO;N co,n
[ I/

Ao
¢ on d \on
no ‘ o0H o/;\on W
Enz—8: % \

Clayden, 2000
the enolization is going to




(Refer Slide Time: 21:19)
* The problem can be avoided if the hydroxyl group at C5 is first
oxidized to a ketone (NAD* is the oxidant).

* Then the green proton is much more acidic, and the elimination
becomes an E1cB reaction, similar to the one in the synthesis of
PEP.

 The ketone must be reduced back to the alcohol afterwards but
Nature can deal with that easily.
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give you

(Refer Slide Time: 21:20)
* The problem can be avoided if the hydroxyl group at C5 is first
oxidized to a ketone (NAD is the oxidant).

* Then the green proton is much more acidic, and the elimination
becomes an E1cB reaction, similar to the one in the synthesis of
PEP.

+ The ketone must be reduced back to the alcohol afterwards but
Nature can deal with that easily.
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an enol such as this which can undergo E1cB type elimination reactlon to kick out phosphate

and give you this product.

Subsequently reduction by NADH perhaps was going to give you back the alcohol here
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* The problem can be avoided if the hydroxyl group at C5 is first
oxidized to a ketone (NAD is the oxidant).

* Then the green proton is much more acidic, and the elimination
becomes an E1cB reaction, similar to the one in the synthesis of
PEP.

* The ketone must be reduced back to the alcohol afterwards but
Nature can deal with that easily.
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which then undergoes aldol reaction to give you the

(Refer Slide Time: 21:39)

* The problem can be avoided if the hydroxyl group at C5 is first
oxidized to a ketone (NAD* is the oxidant).

* Then the green proton is much more acidic, and the elimination
becomes an E1cB reaction, similar to the one in the synthesis of
PEP.

 The ketone must be reduced back to the alcohol afterwards but
Nature can deal with that easily.
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desired product.
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+ This product is dehydroquinic acid and is an intermediate on the
way to shikimic acid.

+ It is also in equilibrium with quinic acid, which is not an
intermediate on the pathway but which appears in some natural
products like the coffee ester caffeyl quinic acid.
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dehydroquinic /5\ NADPH é\ quinic
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OH OH
8
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The product is actually, is dehydroquinic acid and is an intermediate on the way to shikimic

acid.

It is also in equilibrium with quinic acid which is not an intermediate on the pathway but

which appears on some natural products like coffee ester, caffeyl quinic acid.

(Refer Slide Time: 22:00)

+ The route to shikimic acid in plants involves, as the final steps,
the dehydration of dehydroguinic acid and then reduction of the
carbonyl group.

* Doing the reactions this way round means that the dehydration
can be ELcB—wmuch preferved under biological conditions.

f &6 .
Clayden, 2000 u_ﬂ )

The route to shikimic acid in plants involves as the final steps the dehydration of
dehydroquinic acid and then reduction of the carbonyl group. Doing the reaction this way
round means that the dehydration can be an E1cB which is much preferred under biological

conditions.



So what we would expect is the enolization

(Refer Slide Time: 22:20)

* The route to shikimic acid in plants involves, as the final steps,
the dehydration of dehydroguinic acid and then reduction of the
carbonyl group.

* Doing the reactions this way round means that the dehydration
can be E1cB—much preferred under biological conditions.
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here of this ketone to give you the corresponding enol which then, |f you do an E1cB reaction

can eliminate this hydroxide to give you the

(Refer Slide Time: 22:31)

* The route to shikimic acid in plants involves, as the final steps,
the dehydration of dehydroguinic acid and then reduction of the
carbonyl group.

* Doing the reactions this way round means that the dehydration
can be E1cB—much preferred under biological conditions.
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dehydroshikimic acid.
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* The final reduction uses NADPH as the reagent and is, of course,
totally stereoselective with the hydride coming in from the top
face of the green ketone as drawn.

* At last we have arrived at the halfway stage and the key
intermediate, shikimic acid.
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The final reduction gives NADPH as the reagent and is of course totally stereoselective as we

have looked at previously with the hydride coming in from the top face of the green ketone as

drawn here,

(Refer Slide Time: 22:46)

* The final reduction uses NADPH as the reagent and is, of course,
totally stereoselective with the hydride coming in from the top
face of the green ketone as drawn.

+ At last we have arrived at the halfway stage and the key
intermediate, shikimic acid.
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Ok. So then after this stereospecific, stereoselective reaction you get this alcohol
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* The final reduction uses NADPH as the reagent and is, of course,
totally stereoselective with the hydride coming in from the top
face of the green ketone as drawn.

* At last we have arrived at the halfway stage and the key
intermediate, shikimic acid.
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here which is basically shikimic acid.

(Refer Slide Time: 22:56)

* We are half-way there...

Of course we are here only halfway. We have another half



(Refer Slide Time: 22:59)

* The first step is a chemoselective phosphorylation of one of the three OH
groups by ATP—as it happens, the OH group that has just been formed by
reduction of a ketone.

« This step prepares that OH group for later elimination.

* Next, a second molecule of PEP appears and adds to the OH group at the
other side of the molecule.

* This is PEP in its enol ether role, forming an acetal under acid catalysis.

* The reaction occurs with retention of stereochemistry so we know that the
OH group acts as a nucleophile and that the ring—OH bond is not broken.

Clayden, 2000 M

to carry out. Here the first step is a chemoselective phosphorj}latio:n of one of the three
hydroxyl groups by ATP. As it happens the hydroxyl group that has just been formed by
reduction of a ketone. So the first step here is the phosphorylation over

(Refer Slide Time: 23:17)

* The first step is a chemoselective phosphorylation of one of the three OH
groups by ATP—as it happens, the OH group that has just been formed by
reduction of a ketone.

« This step prepares that OH group for later elimination.

+ Next, a second molecule of PEP appears and adds to the OH group at the
other side of the molecule.

* This is PEP in its enol ether role, forming an acetal under acid catalysis.

* The reaction occurs with retention of stereochemistry so we know that the
OH group acts as a nucleophile and that the ring—OH bond is not broken.
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here and this step prepares the hydroxyl group for a later elimination.

Next, a second molecule of phosphoenolpyruvate appears and adds to the hydroxyl group at

the other side of the molecule. So here is the other side of the molecule. Here
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* The first step is a chemoselective phosphorylation of one of the three OH
groups by ATP—as it happens, the OH group that has just been formed by
reduction of a ketone.

« This step prepares that OH group for later elimination.

+ Next, a second molecule of PEP appears and adds to the OH group at the
other side of the molecule.

* This is PEP in its enol ether role, forming an acetal under acid catalysis.

* The reaction occurs with retention of stereochemistry so we know that the
OH group acts as a nucleophile and that the ring—OH bond is not broken.
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shilkmxz scd 3phosphate EPSP—Senoipyruvyshiimate 3-phosphate

Clayden, 2000
phosphoenolpyruvate comes and adds here and gives you

(Refer Slide Time: 23:36)

+ The first step is a chemoselective phosphorylation of one of the three OH
groups by ATP—as it happens, the OH group that has just been formed by
reduction of a ketone.

« This step prepares that OH group for later elimination.

+ Next, a second molecule of PEP appears and adds to the OH group at the
other side of the molecule.

* This is PEP in its enol ether role, forming an acetal under acid catalysis.

* The reaction occurs with retention of stereochemistry so we know that the
OH group acts as a nucleophile and that the ring—OH bond is not broken.

COM

Clayden, 2000
this product.

This is the phosphoenolpyruvate in its enol ether role, Ok and forms an acetal under acidic
catalysis. The reaction occurs with retention of stereochemistry. So we know that the

hydroxyl group acts as a nucleophile and that the ring hydroxyl group is not broken.



(Refer Slide Time: 23:59)

* Now a 1,4 elimination occurs. This is known to be a syn
elimination on the enzyme.

* When such reactions occur in the laboratory, they can be syn or
anti.

* The leaving group is the green phosphate added two steps before.
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Now a very interesting 1,4 elimination occurs and this is known to be a syn elimination on the

enzyme. So here this 1,4 elimination occurs in the following manner.

(Refer Slide Time: 24:09)

* Now a 1,4 elimination occurs. This is known to be a syn
elimination on the enzyme.

* When such reactions occur in the laboratory, they can be syn or
anti.

* The leaving group is the green phosphate added two steps before.
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So the enzyme, basic residue of the enzyme comes in, attacks here,
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* Now a 1,4 elimination occurs. This is known to be a syn
elimination on the enzyme.

* When such reactions occur in the laboratory, they can be syn or
anti.

* The leaving group is the green phosphate added two steps before.
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moves this, electron moves here,

(Refer Slide Time: 24:15)
*+ Now a 1,4 elimination occurs. This is known to be a syn
elimination on the enzyme.

* When such reactions occur in the laboratory, they can be syn or
anti;

* The leaving group is the green phosphate added two steps before.
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this bond moves here and kicks out phosphate. And so this gives us chorismic acid
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* Now a 1,4 elimination occurs. This is known to be a syn
elimination on the enzyme.

* When such reactions occur in the laboratory, they can be syn or
anti.

* The leaving group is the green phosphate added two steps before.
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which has a 1,3 diene, right.

Of course in the laboratory when we do this reaction this elimination can be either syn or anti
but since this is happening enzymatically there is a stereochemistry which is very specific

stereochemical outcome is expected.

(Refer Slide Time: 24:41)

+ The product is chorismic acid and this undergoes the most
interesting step of all—a [3,3]-sigmatropic rearrangement.

* Notice that the new (black) o bond forms on the same face of
the ring as the old (green) o bond: this is, as you should expect,
a suprafacial rearrangement.
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The product here is chorismic acid and this undergoes the most interesting step of all, which
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is basically a 3,3-sigmatropic rearrangement. So this 3,3-sigmatropic
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+ The product is chorismic acid and this undergoes the most

interesting step of all—a [3,3]-sigmatropic rearrangement.

+ Notice that the new (black) o bond forms on the same face of
the ring as the old (green) o bond: this is, as you should expect,
a suprafacial rearrangement.
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rearrangement is something that some of you may be exposed to in your prior classes and
sigmatropic rearrangements are basically neutral reactions which occur in a concerted

manner.

We will not have time to go through this mechanism but what happens here is that you form a
new carbon carbon bond which then, and as shown here and then you break this carbon

carbon double bond and this carbon oxygen bond is broken and you form a new

(Refer Slide Time: 25:22)
+ The product is chorismic acid and this undergoes the most

interesting step of all—a [3,3]-sigmatropic rearrangement.

* Notice that the new (black) o bond forms on the same face of
the ring as the old (green) o bond: this is, as you should expect,
a suprafacial rearrangement.
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C double bond O, OK.

So this occurs in a 3,3-sigmatropic manner and it is called a suprafacial rearrangement.
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« The most favourable conformation for chorismic acid has the
substituents pseudoequatorial but the [3,3]-sigmatropic
rearrangement cannot take place in that conformation.

* First, the diaxial conformation must be formed and the chair
transition state achieved.

* Then the required orbitals will be correctly aligned.

COH HO2C~ —.% NO;C\«

Clayden, 2000
So the most favorable conformation if we draw out the stereochemistry has the substituents in

the pseudoequatorial position, so which is shown here,

(Refer Slide Time: 25:40)

+ The most favourable conformation for chorismic acid has the
substituents pseudoequatorial but the [3,3]-sigmatropic
rearrangement cannot take place in that conformation.

* First, the diaxial conformation must be formed and the chair
transition state achieved.

+ Then the required orbitals will be correctly aligned.
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But in this pseudoequatorial position the rearrangement cannot take place because it is not in

right.

the right orientation. So it has to first flip and form the diaxial conformation which is shown

here,
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« The most favourable conformation for chorismic acid has the
substituents pseudoequatorial but the [3,3]-sigmatropic
rearrangement cannot take place in that conformation.

« First, the diaxial conformation must be formed and the chair
transition state achieved.

* Then the required orbitals will be correctly aligned.
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which is known as the pseudoaxial conformation and then we can imagine a chair like

transition state that occurs as shown here

(Refer Slide Time: 26:03)

* The most favourable conformation for chorismic acid has the
substituents pseudoequatorial but the [3,3]-sigmatropic
rearrangement cannot take place in that conformation.

* First, the diaxial conformation must be formed and the chair
transition state achieved.

* Then the required orbitals will be correctly aligned.

"
- acid | e ; b‘
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which is going to give the product.

And all the required orbitals are correctly aligned in this conformation and therefore this is

favored.
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+ These reactions occur well without the enzyme but the enzyme
accelerates this reaction by about a 10¢ increase in rate.

+ There is no acid or base catalysis and we may suppose that the
enzyme binds the transition state better than it binds the
starting materials.

Clayden, 2000 :
These reactions occur well without an enzyme but the enzyme accelerates this by about a

factor of a million increase in rate. So there is no acid or base catalysis but we may suppose

that the enzyme binds the transition state better than it binds the starting materials.

So

(Refer Slide Time: 26:31)

* We know this to be the case, because close structural analogues
of the six-membered ring transition state also bind to the
enzyme and stop it working.

+ An example is shown alongside—a compound that resembles the
transition state but can’t react.

Clayden, 2000 T
if we were to design a molecule which has a very, which looks similar to the transition state

which we have looked at previously as transition state analogue, then this compound can go

and inhibit the enzyme. And indeed, when a molecule that was synthesized
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* We know this to be the case, because close structural analogues
of the six-membered ring transition state also bind to the
enzyme and stop it working.

* An example is shown alongside—a compound that resembles the
transition state but can’t react.

0!

/TJXQOQH

OH

no,c\<

¥’
t 8
Clayden, 2000 u‘; ]

which resembles the transition state as shown here, this molecule can inhibit this enzyme.

(Refer Slide Time: 26:56)

* We have arrived at prephenic acid, which as its name suggests is
the last compound before aromatic compounds are formed;

* This the end of the shikimic acid pathway.

* The final stages of the formation of phenylalanine and tyrosine
start with aromatization.
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So in this whole process we have arrived at
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+ We have arrived at prephenic acid, which as its name suggests is
the last compound before aromatic compounds are formed;

+ This the end of the shikimic acid pathway.

+ The final stages of the formation of phenylalanine and tyrosine
start with aromatization.
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prephenic acid which as its name suggests is the last compound before the aromatic

compounds are formed. So this is the end of the shikimic acid pathway and the final stages of

formation of phenylanaline and tyrosine start with aromatization.

So aromatization occurs by a decarboxylation followed by pushing of electrons to give you,

to kick out hydroxide ion.

(Refer Slide Time: 27:23)
* Prephenic acid is unstable and loses water and CO, to form
phenylpyruvic acid.

* This &-keto-acid can be converted into the amino acid by the
usual transamination with pyridoxal.
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So the way this would occur is that you can imagine that CO, would be lost

Clayden, 2000
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* Prephenic acid is unstable and loses water and CO, to form
phenylpyruvic acid.

* This x-keto-acid can be converted into the amino acid by the
usual transamination with pyridoxal.
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by this, from this carboxylate ion and then this pushes electrons in thls manner to give you

(Refer Slide Time: 27:37)

* Prephenic acid is unstable and loses water and CO, to form
phenylpyruvic acid.

* This x-keto-acid can be converted into the amino acid by the
usual transamination with pyridoxal.

H nn,

COMH
6 F “coH co,n
Ent—n (;H C
rephienate

phenyipyruvic scid

Clayden, 2000
phenyl pyruvic acid and we know that phenyl pyruvic acid which i is an alpha -keto-acid
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* Prephenic acid is unstable and loses water and CO, to form
phenylpyruvic acid.

* This x-keto-acid can be converted into the amino acid by the
usual transamination with pyridoxal.

transamination is mediated by pyridoxal.
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* The route to tyrosine requires a preliminary oxidation and then
a decarboxylation with the electrons of the breaking C—-C bond
ending up in a ketone group.

+ Transamination again gives the amino acid.
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The route to tyrosine requires a preliminary oxidation followed by a décarboxylation. So here

this prephenate
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* The route to tyrosine requires a preliminary oxidation and then
a decarboxylation with the electrons of the breaking C-C bond
ending up in a ketone group.

* Transamination again gives the amino acid.

Clayden, 2000
will have to undergo oxidation to

(Refer Slide Time: 28:05)

* The route to tyrosine requires a preliminary oxidation and then
a decarboxylation with the electrons of the breaking C-C bond
ending up in a ketone group.

* Transamination again gives the amino acid.

Clayden, 2000 N &

give you this ketone and then subsequent decarboxylation will give ydu the
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+ The route to tyrosine requires a preliminary oxidation and then
a decarboxylation with the electrons of the breaking C-C bond
ending up in a ketone group.

+ Transamination again gives the amino acid.

0 0
j ~J ? H NH,
Y ]

d
oo G co co, .. \
A 2 ]

0] Y [ pree ’

—

L L N, —> v A
e[ © T trosie
w/ OH

Bl b
|
Clayden, 2000 u S

tyrosine residue.
And of course this is, it gives you the, the alpha-keto form which then is going to exist in its

equilibrium and equilibrium with the corresponding amino acid which is tyrosine.
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Haemoglobin carvies oxygen as an iron(ll) complex

* Biological oxidations are very widespread.

* Human metabolism depends on oxidation, and on getting oxygen,
which makes up 20% of the atmosphere, into cells.

* The oxygen transporter, from atmosphere to cell, is haemoglobin.
+ The reactive part of haemoglobin is a porphyrin.

Clayden, 2000
The next topic that we are going to look at is how oxygen is 'Earried inside the cell.
Haemoglobin carries oxygen as an iron Il complex. And this is very important because a
number of biological oxidations which we shall look at shortly is mediated by haem

containing enzymes.



And human metabolism depends on oxidation and on getting oxygen which makes up about
20 percent of the atmosphere inside cells. The oxygen transporter from atmosphere is
haemoglobin and the reactive part of this molecule is the porphyrin ring

(Refer Slide Time: 28:59)

Haemoglobin carvies oxygen as an iron(ll) complex

+ Biological oxidations are very widespread.

* Human metabolism depends on oxidation, and on getting oxygen,
which makes up 20% of the atmosphere, into cells

+ The oxygen transporter, from atmosphere to cell, is haemoglobin.
+ The reactive part of haemoglobin is a porphyrin.
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which is shown here.

So porphyrin is actually aromatic because it contains 18 electrons and if you apply 4n plus 2

rule then

(Refer Slide Time: 29:09)

Haemoglobin carvies oxygen as an iron(ll) complex

+ Biological oxidations are very widespread.

* Human metabolism depends on oxidation, and on getting oxygen,
which makes up 20% of the atmosphere, into cells.

+ The oxygen transporter, from atmosphere to cell, is haemoglobin.
+ The reactive part of haemoglobin is a porphyrin.
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when n equals 4, you get 4n plus 2 to be 18 and therefore this is an aromatic system.
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* These are aromatic molecules with 18 electrons around a
conjugated ring formed from four molecules of a five-membered
nitrogen heterocycle.

+ Chemically, symmetrical porphyrins are easily made from pyrrole
and an aldehyde.

Clayden, 2000 .
And these are symmetrical porphyrins are easily made from a pyrrble and an aldehyde. So if

you react this pyrrole with an

(Refer Slide Time: 29:23)

* These are aromatic molecules with 18 electrons around a
conjugated ring formed from four molecules of a five-membered
nitrogen heterocycle.

* Chemically, symmetrical porphyrins are easily made from pyrrole
and an aldehyde.
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aldehyde you get this kind
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* These are aromatic molecules with 18 electrons around a
conjugated ring formed from four molecules of a five-membered
nitrogen heterocycle.

+ Chemically, symmetrical porphyrins are easily made from pyrrole
and an aldehyde.

Clayden, 2000

of a porphyrin.

(Refer Slide Time: 29:26)

* The hole in the middle of a porphyrin is just the right size to take
a divalent transition metal in the first transition series, and zinc
porphyrins, for example, are stable compounds.

* Once the metal is inside a porphyrin, it is very difficult to get out.
* Two of the nitrogen atoms form normal covalent bonds (the ones
that were NH in the porphyrin) and the other two donate their

lone pairs to make four ligands around the metal
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Then this porphyrin contains a hole in the middle which is just the right size to take a divalent

transition metal ion, Ok.

So in the first transition series such as zinc, which is, you know in the form of zinc porphyrin

and once which is inside this complex,
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* The hole in the middle of a porphyrin is just the right size to take
a divalent transition metal in the first transition series, and zinc
porphyrins, for example, are stable compounds.

* Once the metal is inside a porphyrin, it is very difficult to get out.
* Two of the nitrogen atoms form normal covalent bonds (the ones
that were NH in the porphyrin) and the other two donate their

lone pairs to make four ligands around the metal
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it is extremely stable. It is very difficult to get it out.

So two of the nitrogen atoms form normal covalent bonds and the other two donate their lone

pairs to make 4 ligands around the metal.
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* The complexed zinc atom is square planar and still has two
vacant sites—above and below the (more or less) flat ring.

+ These can be filled with water molecules, ammonia, or other
ligands.

Clayden, 2000 :
The complex zinc atom is square planar and still has two vacant sites above and below which

can coordinate with certain ligands.

And so these ligands can be either ammonia or water
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* The complexed zinc atom is square planar and still has two
vacant sites—above and below the (more or less) flat ring.

« These can be filled with water molecules, ammonia, or other
ligands.

Clayden, 2000

or other ligands.
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* The porphyrin part of haemoglobin is called haem, and it is an
iron(Il) complex.

o [t is unsymmetrically substituted with carboxylic acid chains on
one Side and vinyl groups on the other.

Clayden, 2000
The porphyrin part of haemoglobin is called haem and it is a iron Il complex. It is

unsymmetrically substituted with a carboxylic acid chain
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* The porphyrin part of haemoglobin is called haem, and it is an
iron(Il) complex.

o It is unsymmetrically substituted with carboxylic acid chains on
one Side and vinyl groups on the other.
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on one side
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* The porphyrin part of haemoglobin is called haem, and it is an
iron(Il) complex.

o It is unsymmetrically substituted with carboxylic acid chains on
one side and vinyl groups on the other.
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and vinyl groups on the
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* The porphyrin part of haemoglobin is called haem, and it is an
iron(Il) complex.

o [t is unsymmetrically substituted with carboxylic acid chains on
one Side and vinyl groups on the other.
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(Refer Slide Time: 30:26)

* Haewm is bound to proteins to make haemoglobin (in blood) and
myoglobin (in muscle). The hydrophilic carboxylate groups stick out
into the surrounding medium, while the majority of the molecule is
embedded in a hydrophobic cleft in the protein, lined with amino
acids such a leucine and valine.

* The octahedral coordination sphere of the iron(ll) is completed with
a histidine residue from the protein and an oxygen molecule.

other side.

Clayden, 2000 .
Haem is bound to proteins to make haemoglobin in the blood, or it fbrms myoglobin in the
muscle. The hydrophilic carboxylate groups stick out into the surrounding medium where the
majority of the molecule is embedded in a hydrophobic cleft in the protein which is lined

with amino acids such as leucine and valine, Ok.
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* Haewm is bound to proteins to make haemoglobin (in blood) and
myoglobin (in muscle). The hydrophilic carboxylate groups stick out
into the surrounding medium, while the majority of the molecule is
embedded in a hydrophobic cleft in the protein, lined with amino
acids such a leucine and valine.

* The octahedral coordination sphere of the iron(ll) is completed with
a histidine residue from the protein and an oxygen molecule.

Clayden, 2000
The octahedral coordination sphere of iron Il is completed with the histidine residue as shown

here
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* Haewm is bound to proteins to make haemoglobin (in blood) and
myoglobin (in muscle). The hydrophilic carboxylate groups stick out
into the surrounding medium, while the majority of the molecule is
embedded in a hydrophobic cleft in the protein, lined with amino
acids such a leucine and valine.

* The octahedral coordination sphere of the iron(ll) is completed with
a histidine residue from the protein and an oxygen molecule.

&
Clayden, 2000 “L

and an oxygen molecule which is shown here.
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* Haewm is bound to proteins to make haemoglobin (in blood) and
myoglobin (in muscle). The l«gdroth(ic carvoxylate groups stick out
into the surrounding medium, while the majority of the molecule is
embedded in a hydrophobic cleft in the protein, lined with amino
acids such a leucine and valine.

* The octahedral coordination sphere of the iron(ll) is completed with
a histidine residue from the protein and an oxygen molecule.

Clayden, 2000

The oxygen

(Refer Slide Time: 31:00)

* The oxygen complex can also be drawn as an Fe(lll) complex of
an oxyanion
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complex can also be drawn as an Fe 111 complex of the oxyanion.

So here
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* The oxygen complex can also be drawn as an Fe(lll) complex of
an oxyanion
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is the oxygen complex, here is the
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* The oxygen complex can also be drawn as an Fe(lll) complex of
an oxyanion
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resonance form of it and it can be drawn
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* The oxygen complex can also be drawn as an Fe(lll) complex of
an oxyanion
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as a oxyanion.

* Oxygen molecules are transferved from haemoglobin to other
haems, such as the enzyme P450, and to a wide range of
oxidizing agents.

+ Almost any molecule we ingest that isn't a nutrient—a drug
molecule, for example—is destroyed by oxidation.
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Oxygen molecules are transferred from haemoglobin to other haems such as P 450 which we

shall encounter very shortly and to avoid range of other oxidizing agents.

Almost any molecule that we ingest, that is not a nutrient which for example a drug molecule

is oxidized. And the way this oxidization occurs is that this X is the
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« Oxygen molecules are transferved from haemoglobin to other
haems, such as the enzyme P450, and to a wide range of
oxidizing agents.

* Almost any molecule we ingest that isn't a nutrient—a drug
molecule, for example—is destroyed by oxidation.
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drug molecule. It can
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« Oxygen molecules are transferved from haemoglobin to other
haews, such as the enzyme P450, and to a wide range of
oxidizing agents.

* Almost any molecule we ingest that isn't a nutrient—a drug
molecule, for example—is destroyed by oxidation.
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get oxidized to give you X double bond O which leaves
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* Oxygen molecules are transferved from haemoglobin to other
haems, such as the enzyme P450, and to a wide range of
oxidizing agents.

* Almost any molecule we ingest that isn't a nutrient—a drug
molecule, for example—is destroyed by oxidation.

Clayden, 2000

this molecule behind.



