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In the previous section, we saw overview of the other techniques and also started with the

experimental aspects of performing EIS. We saw different types of equipments based on that.

There are certain things one need to take into account when you do the experiments. You can

use something called Faraday cage. Faraday cage is a metal box in which you can keep the

experimental setup. You have to use short cables if you want to avoid inductance of the high

frequencies.  Usually we will  get information in the middle and low frequencies when we

want to look for kinetics and mass transfer. High frequency information is usually for the

double layer capacitance.  There are different types of sinusoidal waves; one is called single

sine  or  pure  sine  and another  is  called  multi  sine,  which  is  addition  of  few sine  waves

together.

In this part, what I want to discuss is to look at the electrochemical aspects. When you go to

electrochemical cell, the current versus potential is not linear. Earlier, we saw that current is

related to potential in exponential fashion, at least for basic elementary reactions. For actual

reactions in many cases, you will find that the elementary reactions can be exponential, but

still the net current may not be exponential.



However, mostly it will still be nonlinear. Therefore, I want discuss on the cases when you

have nonlinear current potential relationship. In addition to that, I will discuss few aspects of

FFT and digital  filters  because  the  experimental  data  that  you  get  it  goes  through some

processing before you get it. Therefore, when you face any problem, you should be aware of

how this is processed. So you can decide whether it is because of the electrochemical system

or whether it is because of the way it is processed.

Now we will start with multi-sine.

(Refer Slide Time: 01:54)

All of us are familiar with the linear system where you have a relationship saying Y = A +

BX. X can be a vector; Y can be a vector. Assume you are giving a sinusoidal input (call it as

X), Y will be a sinusoidal output, with a constant offset or with a phase difference. Whatever

it maybe, it is going to be sinusoidal. When you have a nonlinear system, a sinusoidal input

will give sinusoidal output + harmonics. Harmonics means, if the frequency of the input, say

0.1  hertz,  the  output  will  contain  0.2,  0.3,  0.4  Hz.  It  means  the  output  contains  integer

multiples of the base frequency and that base frequency is called fundamental frequency. We

will call it as the response at fundamental, response at the second harmonic, third harmonic,

fourth  harmonic  and  so  on.  The  responses  other  than  fundamental  frequency  are  higher

harmonics.  For  example,  consider  this  equation  25 3 2Y x x    and let  us substitute  the

sinusoidal wave as 0 ( )acE sin t . That is what we normally use for potential sin wave. When

you substitute it, you will get.

 2
0 05[ ( )] 3[ ( )] 2ac acE sin t E sin t   .



When you expand it, u will get as:

2 2
0 05 ( ) 3 ( ) 2ac acE sin t E sin t    and replacing 2 ( )sin t , you will get:

2
0 0

1 cos(2 )
5 [ ] 3 ( ) 2

2ac ac

t
E E sin t

   

I do not want to write as sin2, sin3, sin4 etc. But I want to write it such that, the first one would

come in Taylor series expansion, the second part which is ( )cos n or ( )sin n  i.e. 2 , 3

etc will come as Fourier series expansion. So the above equation after rearranging, you can

get:

2
0 02 2.5 3 sin( ) 2.5cos(2 )ac acE E t wt  

So the first part is the DC offset (refer video). This is the fundamental frequency response. 2nd

part is the second harmonic. So instead of writing it as cosine, I can also write it as sin 2ω

with a π/2 phase. (Notice that square term has given rise to a constant and 2ω). If I have a

cubic term (power 3), it will give rise to sin3, 3ω and ω. If I have sin4, I will get 4ω, 2ω and 0

which is basically a constant. So if I give sinn, I will get nω, (n-2)ω and so on until it ends at

ω for odd number of n and ends at a constant for even number of n.

So when I get higher and higher nonlinear terms, correspondingly I will get higher and higher

harmonics.  Now we know that  for simple  reactions,  the current  and potential  are  related

exponentially, which means when I write potential as DC + AC:

0( ) sin( )dc acE tt E E  

I would write current for a very simple reaction as:

0
bEi Fk e

F is the Faraday constant, bE is the exponential factor, k is the pre-exponential factor.

We assume concentration of species involved is a constant. So I instead of multiplying by the

concentration of the reactant,  I  can combine it  in the equation if  I  assume C is  constant

throughout the experiment. Here, we can substitute for E, I will get:

0( ( ) sin(
0

))dc acb E tt E Ei Fk e  

At this level DC potential may or may not be small.

It may be 0, it may be 100 millivolts, 200 millivolts, 600 millivolts, maybe -600 millivolts

with respect to the equilibrium potential. Now we are not making any assumption about the

DC potential. At this stage I would separate the DC and AC component and then expand the

AC component in Taylor series:



xe you can write it as 
2 3

1
2! 3!

x x x
e x    and so on.

Now if I assume that the product b and Eac0 is a small number, then I can truncate this series

after this term (Refer video). I can say Eac0 is very small. Therefore, the product Bac0 is also

small. 2
0acE  is significantly smaller than Eac0. if you say Eac0 is 10-3 volts, which is 1 millivolt,

it is going to be 10-6 for 2
0acE . So you can neglect those terms. With this assumption, we can

make an approximation and say this is approximately equal to:

0 0[1 sin( )]dcbE
aci Fk e bE t 

So if I say that Eac0 part - amplitude of the sin wave be small, then I can truncate this and say I

will get a linear response. System is nonlinear, but my input is very small.  Therefore, the

output I can approximate it as a linear. So if I draw it in a curve, this curve is nonlinear. I can

take this and approximate this area by a small straight line. I can approximate this area by a

different  straight  line  refer  video).  I  cannot  approximate  a  larger  area  by  a  straight  line

because  that  will  be  a  poor  approximation.  So  DC  potential  is  not  important  for  this

approximation. The AC pertubation or amplitude has to be small. When that is small, we can

say that this can be linearized. When it is linearized, the analysis becomes lot simpler and that

is the purpose of doing this. 
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So normally, you would expect the current would come in the first order and with harmonics.

First order is the fundamental and with harmonics. However, if the perturbation is small, you

can say that it is going to be linear system or it is going to respond like a linear system at that

DC potential. If we move to another DC potential, it is going to respond as if it is slightly

different linear system. 

We are not saying that system is linear throughout the entire potential or current range. We

are saying, around a particular range, if you move a little bit I can approximate this by a

linear system. Therefore, if it is linear system, you can do this pertubation in one level and

then say that throughout this range I can tell this is what it is going to be. But because it is

nonlinear  in  real  life  and nonlinear  analysis  is  hard  therefore  we want  to  perform linear

analysis.

We have to conduct experiment at multiple locations and then say at multiple locations we are

approximating by few linear segments and this will help us understand or reconstruct this

entire system behaviour at various levels. Now how small is small? People use 1 millivolt, 5

millivolts, 10 millivolts etc. 20 millivolts will be probably stretching it. If you say 1 millivolt,

people  would  not  question  that  it  is  linear  or  nonlinear,  it  is  definitely  good  enough to

approximate as a linear system, but the noise level will be high. Noise level in the system is

random noise  from outside.  That  is  going  to  be  independent  of  the  perturbation  we  are

applying. So if you apply a large input, you will get a large current output. Compared to the

noise this may be significant.



Therefore,  the so-called signal to noise ratio will be better  or higher. If you give a small

amplitude  perturbation,  signal  to  noise  ratio  will  be  poor;  but  you  can  claim  that  I  can

approximate that the response as a linear system without any problem. If you go to large

perturbation,  the  response  will  be  good.  However,  you  may have nonlinear  effect  which

means you may have 2ω and 3ω contributions (higher and higher contributions).

(Refer Slide Time: 10:02)

Now you can take any function in the time domain and convert it to frequency domain. So

any periodic function can be written as a sum of sin and cosine. Here, I have shown it as sin

with a phase. It is same as sin and cosine. Also, you can write i as function of time, you can

write it in terms of constants and other coefficients. The coefficients can be calculated using

integrals. You can find it in any of the standard books or internet. I am not going to describe

them here.

I want you to note the point that the blue line here is the continuous function, the red colour

circles represent equal time interval, data (refer video or slide). It is a discrete function. So

when you take data (current or current which is converted to potential), it is recorded in the

system only at specific intervals. It is not recorded in between these intervals.

So in between, if the data jumps ups and down, we do not know that. When you do Fourier

transform of this discrete data, you can employ algorithms, which are meant for discrete data.

If you have a function and if I want to specify a function in an interval, in theory, I actually

have to give you infinite number of points. I cannot just tell you this function has this value.



When I specify this, I do not tell you anything about what is the value of the function in-

between.

If I want to specify at all the time intervals, I will have to give from zero to 1 second, but

infinite number of data points. We have finite number of data points which we are going to

handle and for that, we use discrete Fourier transform and in discrete Fourier transform, one

of the algorithm is called fast Fourier transform FFT. The advantage of Fourier transform is

that, you can obtain all the harmonics simultaneously. With one transformation, you will get

all the harmonics, which means, all the harmonics that can be taken from the data. If you

have infinite number of points, you will get infinite amount of harmonics. If you have finite

set of data, you will get only finite set of harmonics. The system may actually have more

harmonics, but you will not be able to extract it from the data.

The analysis is fast and I want to show you some examples (not formula). You can get the

formula from books and you can get the libraries for Matlab or any other programs. Most of

them will have inbuilt libraries.

 (Refer Slide Time: 12:25)

Here, I have constructed a sine wave (this is done in Matlab). 50 millivolts is the amplitude

and you can see it goes from 0 to 50 +/-50. I have given a phase of π/4 radiants or 45 degree.

Instead of starting at 0 at zeroth time, 0 will actually occur here (refer video). At 0 time, it has

a phase and corresponding to 45 degree, you are getting actually 90 degree and so on. And I

have constructed 2 loops and I have given 16 points per cycle. You will get a finite number of



points per cycle in actual data acquisition and we use a function called FFT in Matlab. But it

is wrapped around another function called positive FFT. In theory, your data goes from -

infinity  to  +  infinity  or  the  sine  wave  goes  from  -  infinity  to  +  infinity.  Any  of  the

programming language by default will give you frequencies also from - infinity to + infinity.

But hey are folded in a function called positive FFT. It is just a wrapper library around the

FFT program. It gives you frequencies only from 0 to whatever positive number you get. The

way it works is:

 

(Refer video for better understanding of this paragraph). I have a sine wave; I will not give it

until the end of the sine wave here. I will give it with one point +, because the way it works

is, it is going to take this and it is going to replicate this n number of times. Let us pretend

and say this is the first point, second point, third point, fourth, fifth. So what I am going to do

is, it will come here and in next time interval, it will step and then take the first point and put

it. In next time interval, it will take and put this point and so it will continue. Instead of this, if

i give you points until this, means first point is 0, origin and so on and the last point is here, it

is going to shift to the next time interval and take this as the point and then reconstruct that.

That is not a sine wave; it is a distorted sine wave. So if I want to give 3 cycles, I will give 1

cycle, 2 cycle, third cycle and I will stop just before the end point. So I will give data for n

number of cycles, I can give one full cycle, second cycle or whatever n number of cycles. But

the last point I will cut it before I feed into this, otherwise you will be scratching your head

why it is not coming the way you expect.

This is the implementation in Matlab. If you write your own program or if you take libraries,

you have to be aware of what the constraints are, what the way to give the input and take the

output is. Because of the way that works (it cuts off the frequencies from - infinity to +

infinity), we are wrapping it and getting from 0 to +, whatever value of amplitude you get

you have to multiply by 2.

So this is the command we have used here. E is the vector. We do not give time vector; we

just say this is the sampling frequency. So if the time is going from 0 to some value, we have

10 number  of points,  we have so many intervals,  Δt  is  time interval.  From one point  to

another, what will be the time interval. Take that and take an inverse of that and it will tell

you what the sampling frequency is.



So you need to give sampling frequency, vector and it will give you the frequency range and

the Fourier transform result. This is the implementation. I do not know how it is done inside

the Matlab and I am not going through that. You can use an FFT program and get this. When

you get the value, multiply by two in this implementation to get the amplitude. You have to

add a phase of π/2 because your exponential value is cos ωt + jsin ωt and this is done as a

complex transform. The Y vector in the frequency domain is actually a complex vector. The

absolute value tells you the magnitude and the phase value can be obtained by using the

command angle in Matlab.

You get the phase because you are giving a sinusoidal wave and not ejωt. We are giving only

sinusoidal wave and you have to account for the phase off set. So whatever value you get in

the phase add π/2. For presentation,  I am multiplying by 180/π so that it  is converted to

degree. Otherwise you will just plot it in the radiants.

What has happened in the FFT is, it has split the energies or whatever amplitude you are

getting and gave it in + and + frequencies. It has distributed it equally. That is way the FFT

algorithm has been implemented in matlab. Now, we are throwing away the entire negative

one. Half the energy is gone there. Only the remaining half energy is here. So we have to

multiply by 2 to get this.

(Refer video for better understanding). Let us say you get a vector like this and what you get

in the Y frequency domain is going to be some number a, b + jc, d + je etc. First number is

with 0 phase. It is given some phase here, but it is the DC. So when you write in Fourier

series, first you write a0 and then you write a1 sin ωt, a2 sin 2ωt with phase. So a1 is without

any phase, there is no sine or cosine there. In this case, because we are giving a pure sin

wave, we do not expect to see any constant value. All that we need to get out of that is, it is a

sin ωt with a phase of π/4. First point is the DC and that is 0, magnitude is 0. Second point; it

is not showing anything. Third point, it is at 1 hertz, this is 0 magnitude, this is half hertz.

This is 1, 1.5, 2 and so on (refer video).  Therefore,  what it says is, the magnitude is 50

millivolts at 1 hertz and everywhere else it is 0 and that is what we expect. We are giving a

pure sine wave. It does not go up to infinity; it goes up to number 7. We can see only up to 7

hertz, beyond that we do not know what it contains. Phase value at this 1 hertz is 45 or π/4

radiance. Phase value everywhere else is meaningless because if you take a vector and say it

is  magnitude  is  0,  phase  face  does  not  have  a  meaning.  Phase  has  meaning  only  when



magnitude is nonzero. It does not mean the Matlab will give you as 0 phase in those things, it

just means that you should learn to ignore those. Everywhere else phase is meaningless.

When you  have  non-zero  component,  you  should look at  the  face  and see  whether  it  is

coming correctly. So up to 7 harmonics are present, we have 16 point per cycle. There is a

criterion called sampling criteria. If you want to see 8-hertz data, you should sample at least

at  16 hertz.  Therefore,  you  should  have  minimum twice  the  frequency that  you  want  to

sample. And typically, you want more because there is going to be noise in the system.

(Refer Slide Time: 19:15)

Student is asking doubt to faculty:

If you give only sin, you will not get the correct phase and it is off by 90 degree. If you give

the complex number, cosine + sine in the complex format for this, then it will give you the

correct  result.  Just  like the frequency split  into negative  and positive,  this  also expects  a

complex input for this. We are giving only sine here, so I would get the effective phase if I

add π/2 here. Because I am not giving it the complex feed, it is more of the implementation in

the Matlab. It is more of the way it is implemented for a general purpose, we are writing a

program  to  wrap  it  and  just  cutting  it  to  the  positive  frequencies.  If  you  have  image

processing you will have 2D data, you can do FFT on that, you can have 3D data, do FFT on

that. But you have to be aware of how to use that library. 

(Refer Slide Time: 20:02)



Now what I have done here is to increase the number of points. Sampling frequency is higher.

Now I have 32 points per cycle, you can see it is more crowded here and if I do FFT now, still

first point is DC, second point is half hertz, 1 hertz is 50 millivolts, phase values are random

for everything else, but at 1 hertz, it is still 45 degree. It will show you 45 degree if you do it

correctly. Now the thing is, it is present up to 15 hertz. So if I want more harmonics, I should

sample at a higher frequency.

(Refer Slide Time: 20:41)

Sample frequency tells us how frequently we take data and if we take data at 100th hertz, the

best I can get out of this is 50 hertz. I cannot get a sine wave of let us say 100 hertz by

sampling at  100 hertz frequency, because in one cycle  I will  sample only one point.  The

minimum I  require  is  2.  Typically,  I  will  need more.  So here,  it  is  a  perfect  sine wave.

Therefore, I show you data up to this ((….)) (21:09).



In reality, if I have other waves and it is distorted, and if there is noise, I will not get good

accuracy in high frequency regime because I am close to the Nyquist  criteria in terms of

sampling frequency. Here it is not going to be a much of a problem because it is a pure sine

wave. Now what I have done is sampled only up to 1 cycle. I have gone back to 16 hertz of

sampling, 16 points per cycle.

(Refer video) I have shown it in the same scale and then shown it here that I have truncated

up to this, when I feed it to the program I will feed up to this level and then do FFT. 16

means, I should expect up to 7 hertz or I get up to 7 hertz. Also notice the interval is 1 hertz

now. So if I want to get data at fine intervals, I want to know the amplitude and phase at fine

intervals of 0.1, 0.2, 0.3, 0.4 hertz. Then I need more time, I need to go for more cycles here.

So the summary is, the frequency range 0 to whatever number (7 or 8 here), 0 to 15 or 16

(depends on number of points per cycle) is the sampling frequency. The resolution 0, 1 hertz,

2 hertz; that is one way of moving, 0, 0.5, 1, 1.5, 2; that is another way of going, 0, 0.1, 0.2,

0.3; that is another way of going. The resolution I can get in the frequency depends on total

duration.

(Refer video) Another way to look at is number of cycles. So here, 1 is because of the time I

had taken here, you can take F, 2F, 3F, 4F and if you want less than F, 0.1, 0.2, 0.3 and so on

it  needs  to  be  done  for  longer  time.  Now  in  all  these  arguments,  we  assume  that  this

frequency or sampling interval is identical. We are taking data at 0, 0.1, 0.2, 0.3 so many

seconds  or  milliseconds,  it  is  also  possible  that  you  can  have  data  at  non-uniform time

interval. And there is a method of doing Fourier transform for that we are not going to get

that at all. We are going to say our sampling intervals are uniform, but we are going to look at

data only with that assumption. Now when you actually take data, you send the commands,

software sends a command and it usually goes to a data acquisition board, collects data, you

would say take data at this interval for so much time. And there is a clock within that chip or

board which is used to collect at those intervals. It senses all the time, but it will save data at

particular interval. That is stored in a buffer and then transferred to the main CPU or to the

hard drive. It does not send command; sends another command after 10 millisecond; sends

another  command  from the  operating  system.  It  sends  the  command  to  the  chip  saying

acquired data for ‘this’ much time at ‘this’ interval.



And the chip has a buffer, you cannot ask it to hold infinite number of data points which

means you cannot say to give high frequency sampling for long time. Each chip comes with a

buffer, so there are limitations. Depending on which one is used in this, you can say sample

every second for 100 second. It is possible to do it. You cannot say sample every 100 second

for 1 year. The chip size may be sufficient. But the chip also has a limitation on what is the

maximum  and  minimum  sampling  frequency  it  can  handle  and  you  cannot  exceed  that.

Synchronisation will  not happen by sending it  from operating system. So time interval  is

done at the chip level. So you cannot tell, I want many harmonics and fine resolution. Only

up to some level, you can do it. It is not that you have lot of storage and I do not mind waiting

for long time. If the command is going from the operating system and data is taken up every

minute, time accuracy would not be good. If it is done at the chip level, time accuracy is

better. In general, because of all these, there are limitations on how it is done in the actual

chip level. There are limitations on how data is acquired and given to us at the instrument

level.

(Refer Slide Time: 25:25)

There are other filters, digital filters that can be used to process the data; an example is freqz

command in Matlab. If you look at the Fourier transform earlier, you will get data at finite

time intervals, you will get data at f, 2f, 3f, or you can get data at 1/2 f, 1f, 1.5 f, 2f. If I go for

longer time, you can also imagine I get 0.1 hertz, 0.2 hertz but the frequencies are also at the

even intervals.



But let us say I do not want all this, I want data at few frequencies, I want to look at data at 1,

2, 5 and of course you can take the vector and do this. But you can also use what is called

filters or digital filters and achieve the same objective. Again you need to feed n-1 points for

this implementation. The way it called is, it can be used to generate many other types of

filters. This is the general-purpose command (refer slide or video). This is the vector of data 1

and I give the frequency range, I can specify here that it is going to be 0 1 2 3 4 5 6 7 hertz or

0 1 2 5 hertz whatever I want here. Sampling frequency has to be given and because of the

way it is implemented, you also had to divide by the length of the vector to get the correct

value, equivalent of FFT and you need to multiply by 2 to get the magnitude add phase offset

of π/2.

And you can do that and compare with the results in FFT. Here I have taken 1 2 3 4 5 6 7 8

just like what we would get in FFT. Now when you look at this the red - fill square is the

freqz result and FFT is given by the open circle (refer video). And they are the same for 1

hertz where we have significant amount of information. At all other locations this magnitude

is 0, phase value may or may not match,  it  does not matter. Whenever the magnitude is

nonzero, this command works correctly. I can also say I do not want it everywhere, I want it

only at 0, 1, 3, 5.

(Refer Slide Time: 27:20)

And of course at 1, it will match, it does not matter whether the remaining of it may or may

not match. However, with this data I can ask this filter to give me data at 1.5, 2.5 or any



number I want. Here I got only 16 points per cycle and I got one cycle. So I can go up to 7

hertz, I can go at a frequency step of 1 hertz.

(Refer Slide Time: 27:50)

I can go to 2 cycles, I can go at a frequency step of 1/2 hertz. If I say give me data at 0, 1, 2.5

and 5, it gives data at 0, 1, 2.5, and 5. I can also tell the filter to give data at 0, 1, 2.2 and 5. It

will do the mathematical calculation except that it will give me incorrect information. Unless

you are aware of it you will process it further and get results, but they would not be correct.

When they implement it in the hardware also, they will have to use some tricks, single sine is

usually not a problem, you will have problem only for multi-sine. I want you to go through

the details and see, but right now I want to emphasize that if you ask it to give data at a higher

resolution than possible theoretically, here I want data at 0.2 resolution, it gives data at 0, 1/2,

1, 1.5, 2, 2.2 that resolution is not possible. I can get only at 0.5 resolution, if I want data at

0.2 resolution; I need more number of cycles. If you do Fourier transform by FFT and get the

array you will see you do not have 2.2 there. If you do this filter, it will give you an answer,

but you will get a wrong answer, you would not get any indication saying we have a problem.

(Refer Slide Time: 29:09)



“Professor - student conversation starts”

Student:  Sir for the freqz, you specify the resolution by setting points. 

Prof: You do not specify resolution; you will tell that these are the frequencies at which I

want the power, magnitude and the phase.

(Refer Slide Time: 29:21)

Student: So it decides the resolution based on the decimal. 

Prof: It does not decide the resolution. It applies the algorithm whatever it has inside, I do not

know the algorithm there. Internally it uses FFT at some level, but basically you have digital

filter  and when you are using it,  you have to be careful.  Whether you are using it  in the

software, or whether it is implemented in the hardware, you have to be careful in the sense

that when you ask, that time ‘you’ have to verify whether your request is correct or not for the



given set of data, for the given time interval and given total time. If it is not correct, you will

not get the correct result.

(Refer Slide Time: 29:55)

Student: So the 0.2 Hz problem is because the resolution of the algorithm itself does not go

with the point, right? 

Prof: No, no, if I give data up to 10 cycles, it will go in 0.1 interval. It is not the algorithm,

which has the problem. My feed and request of the algorithm; that combination is not correct.

If you give correct feed and the correct request, it will give me the correct data. If you give

this feed, I should not ask anything better than 0.5. I can ask at 0.5, I can ask at 1 hertz. I

cannot  ask  0.7.  If  I  want  0.1,  I  should  give  that  many  number  of  cycle.  If  I  want  0.1

resolution, I should give 10 seconds. If I want 0.01 resolution, I should give 100 seconds of

data, and then it will give me the correct result. Problem is, if I give a wrong request I will get

the wrong data and probably I will proceed with the analysis without knowing that there is a

problem. That is more dangerous. If you do not get, it is okay. You have a problem, but you

know that you have a problem. The real problem is when you get the data, which is not

correct,  and you  assume or  you  believe  it  is  correct.  It  is  true  in  experiments  also.  The

equipment gives you problem and you do not get data it is not pleasant, but you know there is

a problem and you will try to fix it. If it gives you garbage data and you do not realize it is

garbage data it is really a problem, because you will come to conclusions, which are not

correct. 

 “Professor - student conversation ends”



 (Refer Slide Time: 31:00)

Similar to FFT, there is another technique called cross correlation. Let us see you have a sine

wave or you have a signal, which can be written in Fourier series like this.

You can write sin A + B as a combination of sine and cosine, same way you can write this 

   sin t    as 

      sin t cosine cosine t sin    , 

which means when I write it in terms of ωt alone, I can combine this and say for a given Φ,

this is the constant (refer video). So I can expand this as:

sin ωt + cosine ωt. Sin 2ωt + cosine 2ωt. This is another representation of Fourier series.

Fourier series can be sin ωt + Φ, it can also be sin ωt + cosine ωt with different coefficients in

front of them. Now the sin functions are known as orthogonal functions. It means, if we take

a period T, I will get 0. Sin mωt and nωt, as long as m is not equal to n I will get 0. If m = n, I

will get a value, I can normalize it and get the factor out of this (refer video).

Likewise, you can use this for cosine also; sin and cosine function are orthogonal, which

means if we take the function I, which can be expanded like this (refer video) and then I do

the integral, I will get the component only corresponding to the sin and everything else will

go to 0. Same way I can do it for cosine. So I can get the coefficient of 1S and 1C by doing

this integration (refer video). I can get the coefficient of 2S and 2C by multiplying by sin 2ωt

and cosine 2 ωt and perform the integral.



This method is called cross correlation. I can get the phase by doing the sin and cosine, I can

get i1S and i1C which means I can back calculate and get Φ1. This method is slower compared

to the FFT analysis and for each harmonic, you have to do the calculation. In FFT, once you

do the calculation you will get 0 to 7, 0 to 15 whatever I have shown in the example, you will

get it. It is not that you will get only the first harmonic and you have to do extra effort to get

the second harmonic. You go through the effort and you get the entire vector out of it. Here

you have to do it multiple number of times and these are usually done at the chip level. It is

not that data is taken and then processed in the software. Then you can even try parallel

processing.  These  are  done with  the  chip  level  and usually  you  get  only  one  harmonic,

fundamental harmonic out of the lock-in amplifier. 

Although you can set it for other harmonics, but if I want to acquire data with the normal

lock-in amplifier I will have to run it once at the fundamental mode; run it again at the second

harmonic, and run it again for the third harmonic and so on. So it is going to be slower and

system might have changed between the runs. Run time becomes much longer than what you

would get in FFT. But this also happens to be more accurate in terms of ability to reject noise.

So implementation is slower, multiple harmonics need multiple calculation; it has a better

signal to noise ratio when you compare to FFT. 

(Refer Slide Time: 34:30)

So whatever we have seen so far is for a single sine, what happens when I add 2 sine waves?

In this example, I am showing you 1 hertz and 2 hertz (refer slide or video). I am showing

them as continuous lines;  it  is of course generated using discrete points. You can see the

combine wave, they have 0 phase, they have equal amplitude of 2 (whatever that value it is, it



is not specified whether it is volts or millivolts or anything in the figure). Total is not going to

go until four, because these are at different frequencies and you will get a combine wave.

This has a period of 1 second, this has a period of 1/2 second combined wave has a period of

1 second, that means if I give you this data you can replicate it n number of times you will get

the wave that we generate from this.

When we do Fourier transform, you get 1 hertz, I got 2 as a magnitude, 2 hertz also has 2 as

magnitude, 1 and 2 hertz, the phase is 0, it is what we would expect to see. Now if I apply

this to a circuit, I will get current. I can do the FFT on the current. I will get similar to this; I

will get 2 other graphs saying that this is the magnitude of current in two different cases. This

is the corresponding phase value etc. So I can get the ratio of magnitude; I can subtract the

phase; I can tell this is the impedance and this is the next impedance based on these 2 values,

I  can also tell  the magnitude and the phase of the impedance at  the same 1 second data

acquisition time. Normally I will have to do 1 second here and a half second here, one and a

half  second,  that  is  absolute  minimum.  We will  forget the data  processing time.  But  if  I

combine these waves and send this as one wave, I can get the impedance at 2 frequencies in a

shorter time compared to doing it separately, as long as I can do the Fourier transform. If I

send it on 1 hertz, 2 hertz, 3 hertz, 4 hertz, I will have to add at those times and say this is the

data acquisition time. Now I can combine all those waves, send one, get the output, and do

Fourier  transform of  the  input  as  well  as  the  output.  We should  know what  the  Fourier

transform of the input is. However, we will anyway do this process, then compare, and get

the results. You can get the results of impedance as a function of frequency. However, there

are certain pitfalls for that.


