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So in the last class, we have seen how we can use KKT. They looked at different cases with large

amplitude perturbation and another with drift, potential drift. Now what I want to describe is the

following. So far, we have said whenever there is an adsorption involved, we said that Langmuir

isotherm model is applicable. The main reason we have done that is so that we can get analytical

expression.

When we expand the expressions in Taylor series and truncate after the first term, we could do

all these easily when Langmuir adsorption isotherm model is used, but there are other models,

which might be more appropriate. They are a little more complex, but if you want analytical

solution;  it  is  not  easy  and in  some cases,  it  is  not  possible  to  get  the  analytical  solutions.

However, the last three classes we have seen that when we go to NLEIS.

Most of the time, we end up using numerical methods. I want to show some examples where

instead of using Langmuir isotherm model, how we can handle Frumkin or Temkin isotherm.
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Now all  these isotherms describe the equilibrium constants.  In  case of Langmuir  adsorption

isotherm model,  this  assumes  that  the  equilibrium constant  is  independent  of  the  coverage,

fractional surface coverage. It assumes that if you have n number of sides, the probability of

adsorption occurring in a place. In our case, a metal becoming metal adsorbed species. That is

not dependent on the location of the site.

Whether it is here or here, or whether it is near the center or at the edge, if it  is vacant, the

probability  of adsorption is  equal  for all  those sides,  all  the vacant sides. It  does not matter

whether the neighbor is an adsorbed species or a vacant site. It does not matter whether this

location is at the center or at the edge, okay. So there is no interaction between the species. So in

the Langmuir, all sides are assumed to be equal and there is no interaction between the species.

Another adsorption isotherm is called Frumkin isotherm. This says that there is an interaction

between species. Sometimes presence of one species will reduce the probability that adsorption

will  occur  at  the neighboring site  compared to  site  where all  the surrounding sides are  also

vacant. This is repulsive interaction. If you already have a species here, then if you look at the

chance of adsorption happening right next to this versus an adsorption happening in these sites,

this site has a lower probability.



Basically  the  presence  of  an  adsorbed  species  reduces  the  probability  because  there  is  a

repulsion.  In  theory, you can  also  say  that  presence  of  a  species  enhances  or  increases  the

probability of adsorption happening right next to that. That is because of attractive interactions.

This is one scenario. Another way to look at that is to say that we have n number of sites, not all

sites are equal.

So if I have certain number of sites here, in the very beginning adsorption will occur only at

certain sites; preference is given to those and then it would occur at certain sites and then third

probably here and fourth here. These are described by the energy levels. In certain cases, it is

easier to adsorb. In certain sites, it is harder to adsorb and whichever is harder, it occurs later.

Temkin  adsorption isotherm basically  assumes that  all  the sites  are  not  equal  and there  is  a

variation in the site quality.

And Frumkin adsorption isotherm assume all sites are equal in the beginning and then adsorbed

species is present in one place, then the chance of adsorption or the probability of adsorption

right next to that is changed. If I look at the variation of the adsorbed species concentration

versus concentration in solution for example, the equation which describes the Temkin isotherm

is  similar  to  the  equation  which  describes  the  Frumkin  isotherm,  when repulsive  forces  are

active. 

Now I can give you an analogy. Imagine, you go to a restaurant. You have n number of seats and

some seats might be occupied; some seats might be vacant. If we say that a new person who

comes in will occupy any vacant seat, okay without worrying about whether the neighboring seat

is occupied or not. So if it is vacant, the probability that the new person who enters will occupy

that seat does not matter where that is located in the restaurant and whether the neighboring seat

is occupied or not.

As long as a seat is vacant, somebody might occupy it. The probability is same for all the vacant

seats. That is Langmuir adsorption isotherm. In case of Frumkin isotherm, imagine that you go to

restaurant, you go to a table, in that table two are occupied, you are not likely to go to that same



table and take the third seat or the fourth seat, right. You are likely to go to a place where it is

completely vacant, a table where nobody is occupying there.

So this is equivalent to saying that all sites in the beginning are equal, but if some sites are

occupied, then there is a repulsive interaction. That is, you are not likely to go to a place, which

is already occupied with few vacancies right next to them. You are likely to go to a place where

there is nobody around, okay. On the other hand, if you know the people who are there, if you

are friends with them, you are likely to go and join them in the table.

That is similar to saying attractive interaction. So if you do not know them, if they are strangers,

you are likely to go to a place where it is completely empty. If you know them and you want to

go near them or sit next to them, that is similar to attractive interaction. Now it does not mean the

seat is better or the location is better. It just means that location is better because that person is

present there or location is worse because somebody is present there.

Now Temkin isotherm, the way you can describe that is this. You have a restaurant. We have n

number of seats, but some seats have better view, so anybody who comes in will first occupy

those seats, okay. The ones which have poorer view probably could get occupied second. We do

not consider the interaction between the species, that is to say if you have a table where it is

partially occupied, the view is very good.

This scenario, it says that the third person who enters will go and occupy that table, though it is

already occupied by somebody else, it is partly occupied by somebody else, but still because the

view is good, the new person will go and occupy that table. This is just an analogy.
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In case of Frumkin isotherm, it does not tell anything about the rate constant. All that it tells is

the equilibrium constant. So if you have a simple reaction, okay, in one step, let us say k1 is the

rate constant for the forward reaction, k-1 is the constant for the reverse reaction. Then it does

not tell how k1 will vary or k-1 will vary. It just says that equilibrium constant, which is k1/k-1,

that is dependent on theta. That is all it says. 

And the dependence on the theta equilibrium, fraction of surface coverage at equilibrium is given

by this expression. So k equilibrium 0, exponential of beta, theta equivalent, although it does not

tell anything about k1 or k-1, we can get this expression for equilibrium constant if we say that

k1 or k-1 for the reverse reaction is given by an expression like this. K1 is given as k10, earlier

we would have said k10 exponential b1e, right.

Because we said this  is  Langmuir  isotherm model,  but now because it  is  Frumkin isotherm

model, it also depend on beta 1G theta. Now G is the ratio of variation in del G that is Gibbs free

energy with respect to theta. That is in the numerator. The ratio of that to the factor RT, R is of

course the universal gas constant, T is the temperature. Now beta 1, beta 2 are called coverage

parameters. In this case, beta 1 is for the first reaction, beta 2 is for the second reaction.

And we say both these reaction rate constants are going to depend on theta. Now we are going to

assume that repulsive interaction is likely if part of the surface is occupied by n + adsorbed, site



here is more likely to become n + adsorbed compared to this site, because these two are charged

species. It is quite likely that they will have repulsive interaction. Because of that, we are going

to say, if theta increases, if this becomes more, this reaction will slow down.

But if theta is more, it is more likely that this reaction will happen faster. That is to say k1 will

decrease with theta and if k1 has to decrease with theta, G of course is a positive number here,

beta 1 has to be negative, beta 2 will be positive, then we can say when theta increases, k2 will

increase, k1 will decrease. So that is more realistic scenario.
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Now we can write the mass balance equation, charge balance equation, as we have done before.

We would normally write. For this, the mass balance equation will be k1 1-theta-k2 theta that

would tell us gamma d theta/dt. Instead of k1, we expand this and write it as k10 exponential

beta  1G theta  exponential  B1e. That  second reaction  is  a  chemical  reaction.  Therefore,  it  is

independent of potential, but it is dependent on theta anyway.

And the current is of course given by first step, Faradaic constant, k1 (1-theta), second step does

not contribute to the current, therefore it is not shown here. Now, under steady state condition, if

you apply a DC, the fractional surface coverage will also give you a steady state value. We call it

as theta FF. We can get that by setting these terms to 0. However, in the earlier case, when we

have Langmuir adsorption isotherm, it is easy to rearrange and get a solution for this.



In case of Frumkin isotherm model, you cannot get an analytical solution. So you can set this to

0, that is straight forward, but you have to use numerical method to solve this and get a value for

theta FF, okay. I want to show you an example. Let us say the k1 value b1 value, k20, b2 is of

course 0 here, gamma value and at a DC potential of 0.3 volts versus OCP, AA capacitance is not

relevant for this, but when we calculate the total impedance, we need that value also.

And in that case, we need to look at different AC perturbations, 10 millivolts or 100 millivolts. G

value is taken as 20. Typical values would vary between 0 to 20. It is a dimensionless number. So

we will keep it as 20 here. Beta 1 as I said theta is -1, beta 2 I said theta is +1.
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Those cases are of course; this is in voltage sinusoidal perturbation. K10 b1, b2 is set to 0, still

b2 is not necessary, but it is already in the court, so we set it to 0, because second reaction is

chemical reaction and this is actually G. For some reason, it is written as R1 in the code and we

calculate the impedance, we will look into the value of frequency going 100 KHz to 1 millihertz,

10 frequencies per decade, logarithmically spaced.
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In order to calculate the steady state value, what we have done is first rearrange this. We have

this expression, bring this to the right side, you would get k20 e power b2G theta*theta. Then

bring this to the denominator, you will get theta/1-theta SS, then divide by exponential beta 1G

theta SS, you would get exponential of b2-b1. What is left is k10 exponential b1 eDC, that is one

part. On the right side, you would have got k20.

Bring it to the denominator, so you would have one expression A, another expression B. A-B is

set to 0, okay. For a given value of eDC, we have to find a theta such that this is satisfied. So

what we can do is to write this as f(theta), okay. Find the absolute value f(theta) and that is going

to be minimum when f(theta) is 0. It is a real number. It can be positive or negative number, okay

and this number when we take absolute value.

That is going to be the minimum when this f(theta) is 0. So what we have done is use a function

called fminbnd and say FindTheta. We set the parameters if I want to change the value of k10b1,

K20 gamma, or G, well gamma is not relevant here, if I have to change G. Beta 1, beta 2 etc., I

can positively using the vector P1. So we can get the variable and parameter values in the first

few steps. I am not showing all of them here because of space.

Then, we define something called error. Error is term A-term B. This is theta/1-theta exponential

of G beta 2-beta 1*theta. So this does the first term and this is of course k1DC partial because k1



is K10e power beta 1G theta e power b1e. So when e is set to eDC, this entire term will be

k1DC, but if I take only k10 and b1e, we will call it as k1DC partial/k2, of course k2 is k20, but

does not matter. We can set beta 2 as 0 and that is going to be same as k2DC partial.

We find the absolute value of this and minimize this.
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When you want to get the impedance, what we have to do is apply a DC on top of the DC,

superimpose an AC and then find the response. We find the theta response, we find the current

response. We take the current steady periodic results, do the FFT and then we know what to do,

okay. So to integrate this, earlier we would have said k1 (1-theta)-k2 theta/gamma. That is going

to be d theta/dt and in that case it would have been k10 exponential b1e.

But in this case it is little more complex, does not matter. If you are going to use numerical

method, you can just substitute whatever expression we have to. This case, I would have written

it as d theta Frumkin for mechanism 1 and we get all the parameter values, variable values and

then first set the d theta/dt to 0. We calculate eAC. We calculate the potential e as a sum of eDC

and eAC and we will continue in the next page.
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This is the equation that we want to integrate, right. We will set k1 and k2 as k10 exponential b1e

exponential beta 1G theta, k20 in this case b2 is 0, so it does not matter and likewise for beta 2 to

get the k2. Now I have written this as term 1, term 2. So k1 (1-theta) is term 1 k2*theta is term 2.

Term 1-term 2/gamma should give us d theta/dt. So we want to write like this so that it is easier

to debug if there is any mistake in the code, it is easier to debug this one.

When you apply sinusoidal potential, this is integrated for about 2 seconds, or 1-1/2 seconds, you

can  see  that  it  oscillates,  it  drifts  and then  achieves  steady periodic  result  after  some time,

perhaps after half a second, definitely after 1 second, okay. So we have seen this in Langmuir

isotherm model. It is going come in Frumkin, Temkin, any of these adsorption isotherm models,

we had to look at this. We have ensure the steady periodic system and then we have to take the

data, okay.
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So for example, the default tolerance value is 1e-6 if I remember right in the MatLab. If you

want a little more accurate value, you have to change that. This integration works well when you

use ODE 15S, because the equations happen to be stiff equations, okay. When we are looking at

analytical solution, we never had to worry about what type of equation it is. Now when you are

going to use numerical method, you have to use the correct solver, ODE solver.

If you have stiff equations, and you use the normal solver, either it will not give you the result or

it will take very long time and give you some results, okay. So initially we wait for certain time,

we  calculate  the  number  of  cycles  based  on  the  frequency, wait  for  certain  time  and  then

integrate for some more time n number of cycles. I have not shown you all the details. So this

first part is for waiting, second part this t is little different.

It is based on the frequency, based on the number of cycles, based on the number of points in a

cycle and then of course once I integrate, you get theta, you can get the theta V is actually vacant

sites. You can calculate e, you can calculate k1, f(k1) vacant site theta V gives us the current and

then you can go through f(t). So process is the same, it is just that you need to get the steady state

values using numerical methods here.

You have to do the integration, which is the correct expression for the k1 and k2. Otherwise

whatever we have done with Langmuir isotherm model for small or large amplitude perturbation,



we have to use the same methodology here. So that way numerical method is pretty much the

same. There is no extra difficulty in applying it for a Frumkin or Temkin isotherm model or any

other isotherm model compared to applying it for a Langmuir isotherm model.

In case of analytical  solutions,  it  is  possible  only for small  amplitude  perturbation.  In some

special cases, you might get it for larger amplitude perturbation, but by and large it is possible

only in the linear regime and that is also relatively easy to do only for Langmuir isotherm model,

okay.
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Just as an example, see if I set the amplitude eAC0 to 10 millivolts, I get spectrum as shown by

this continuous line here. If I set it  to 100 millivolt,  it  is little different,  but in terms of the

difficulty  in  getting  these  results,  there  is  no  real  difference,  okay.  For  the  given  set  of

parameters, it is one adsorbed intermediate, it gives you two capacity loops. One capacity loop is

coming from charge transfer resistance and double layer capacitance.

The second capacity loop comes from Faradaic process and of course, if I give two-step reaction,

for example with 2+ solution plus another electron, okay, depending on the parameter values, I

can also get inductive loop. So even here when I have n adsorbed intermediate, I can get n+1

loop. One loop is for the double layered capacitance in parallel with charge transfer resistance.

Every adsorbed intermediate would give me 1 time constant or 1 Maxwell pair.



The rate constant could be described using Langmuir isotherm model or using Temkin isotherm

model or Frumkin isotherm model. It can be complex, but we will not get more number of loops

because of that. That is also something I would like you to note.
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So  in  summary,  using  numerical  method,  it  is  quite  straight  forward,  okay  to  simulate  the

impedance spectrum and to get the steady state values to simulate the impedance spectrum for

reactions where the intermediates do not necessarily follow Langmuir’s adsorption isotherm and

although I have shown only the impedance results here, it is pretty straight forward to extract the

second, third and n-th harmonic from this.

And whatever precautions we took in terms of waiting for certain time to get steady periodic

results, we have to take the same precautions here also. Otherwise what we get is in the unstable

region.


