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So earlier we saw that you can handle a simple electron transfer reaction, we can use Fourier

series expansion and get the response at fundamental and at higher harmonics. You can also

use Taylor series expansion, rearrange it and get an approximation for the Fourier series. You

can also use numerical method all of them should give you the same result as long as we use

enough number of terms, as long as we have enough accuracy in the numerical calculations.

Now I want to show you how to calculate the NLEIS response for a two-step reaction with an

adsorbed intermediate. I am going to illustrate with the numerical method.
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So we are going to take a reaction where metal is going to dissolve into metal plus solution,

but it goes for an intermediate stage we have seen this example before, metal goes to metal

plus adsorb and then it goes into solution. So the first reaction rate constant is given by K1,

second constant is given by K2. Here also we are assuming that the mass transfer is rapid, we

are assuming that the solution resistance is negligible.

So we have written the mass balance equation for this. First step forms theta, the second step

consumes theta. So we will rate K1 1 - theta for the rate of formation, K2 theta for the rate of

consumption. So gamma D theta by DT is given by K1 1 - theta - K2 theta and a steady state

condition we will set it to 0 and we will call the theta as theta SS and the first reaction is

electrochemical reaction.

Second reaction there is no charge transfer so it is just a chemical reaction. So the current,

Faraday current can be written as Faraday constant multiplied by the rate of the first reaction

and the rate of the first reaction is K1 1 – theta. Now if I calculate the steady-state theta value

I can set it to 0, rearrange it, K1 value will be K1 at a particular DC potential and K2 of

course is independent of potential.

K1 we will write it as K1 0 exponential of b1 e. So DC potential of eDC it is going to be K1

DC. K2 is just constant we can write it as K2 0, but it is basically a constant. Now in the

numerical method we are going to mimic the experimental method that means we apply a

potential, we measure the current or calculate the current and then subject it to either Fourier

transform or say sensitive detection, we are going to go with Fourier transform.



So we measure the current or we record the current in time domain and then convert that into

frequency domain. So here step by step, first step is to generate sinusoidal potential  as a

function of time, it is pretty straightforward. Second, calculate the current as a function of

time and that is where we need to actually use these equations.

Once you calculate  the current  as a function of time at  regular time intervals  it  is pretty

straightforward  to  subjected  to  Fourier  transform,  get  the  Fourier  series  expansion  and

calculate the impedance or calculate the i at any frequency. So we will record the phase and

magnitude, of course we record the DC, it has 0 phase, we record the phase and magnitude at

omega, 2 omega and so on.
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So the first part is generate the sinusoidal potential E is Edc + Eac0 sin omega t. To calculate

the current as a function of time, we first need to calculate theta as a function of time. When

we apply  sinusoidal  potential  at  some frequency  the  surface  coverage,  fractional  surface

coverage will also change or it will oscillate. So we need to calculate that and in order to

calculate that we need to use the mass balance equation.

So we split it as calculate the rate constant in order to calculate the current as a function of

time I need to calculate the rate constant as a function of time, I need to calculate theta as a

function of time. This is again pretty straightforward; to do this I need to integrate the mass

balance equation. Once I have K as a function of time and theta as a function of time it is

pretty straightforward to calculate the faraday current as a function of time.



Now K1 as a function of time is easy to write. K1 0 e power b1 E dc e power b1 Eac. The

mass balance equation we can rearrange it and write it as with brackets d theta/dt as 1/gamma

K1 1- theta – K2 theta, K1 of course we have to expand it and write it as K1 dc e power b1

Eac. This is a first order linear ordinary differential equation. As far as I know there is no

analytical solution for this.

For a given initial condition, it does have a unique solution it is guaranteed to have a solution

and it is unique, but I am not aware of an analytical solution for this. We can do numerical

integration  any way and get  theta  as  a  function  of  time.  So we assume we apply  a  DC

potential and at certain time where we say this is time t = 0, we will start applying an AC

potential.

So at that time just at that time or until at that time the theta value is theta steady state which

is calculated here. So we will write at time t = 0 theta is theta steady state and after that we

apply a sinusoidal potential and we can calculate the response.
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So just a description of the MATLAB code that we used K1 0 it is 10 power – 9, b1 value is

given here, k2 0 gamma value at  certain DC potential  and AC perturbation 0.1 volt here

means 100 millivolt and for 1 frequency we can use certain number of cycles. We do not

want  to  apply  1  sinusoidal  potential  and  look  at  the  response,  we  want  to  apply  many

sinusoidal potentials and look at the response, there is a reason for that, we will see when we

see the results okay.



And within 1 cycle I have to collect data at many points. We will use 32 points you want to

use 2 power n so that Fourier transform is easy to do and the period of 1 wave is of course

inverse of the frequency and I can calculate the time interval based on that period and the

number of samples we want to take in a cycle and you can generate a time vector saying

starting at 0 at these intervals go for so many cycles or go for this much time.

And to calculate the steady-state value we can calculate K1 at dc K2 of course is independent

of potential. You can calculate the steady state theta value and use that as initial value.
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And we  want  to  use  this  equation  d  theta/dt  and  integrate.  So  we  use  a  certain  set  of

parameters. Parameters are given to the program. We need K1 0, b1, K2 0, gamma, dc value,

ac value and the frequency of course omega is 2 pi f okay. Now by default if I remember it

Matlab uses a tolerance value of 1a - 6 that is 10 power – 6. If you want to get accurate

results you can change the tolerance value.

And here we have used ode45 as the numerical solver, we use what is called anonymous

function and we create as function called d theta and we pass the parameters to that, t vector

is  basically  going from 0 to  so much time with this  initial  value and with this  tolerance

values.
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The function d theta essentially take this parameters K1 0, b1, K2 0 and so on and this is dy

here represents  d  theta/dt.  We first  generate  Eac as  Eac0 sin 2 pi  ft  or sin  omega t  and

potential is Edc + Eac. K1 is of course K1 0 exponential of b1 multiplied by potential and K2

is K2 0. When d theta by dt is 1/gamma multiplied by within brackets k1. So this entire term I

can write it as K1 1 - theta K2 multiplied by theta. So if we do this integration what do I get?
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First certain values K1 0 is 10 power - 7 moles per centimeters per second b1 is 15 inverse of

voltage K2 0 a certain value gamma with 10 to power - 7 moles per centimeter square and a

dc potential of 0.5 volts with respect to open circuit potential. When we are away from open

circuit  potential  significantly far away from the open circuit  potential  we can neglect the

reverse reaction and we have done it for a few frequencies.



Here I am showing you the result for 1 kilohertz and 100 millivolts, later we will see the

results  for  other  combinations.  Other  combinations  of  perturbation  amplitude  and

frequencies. First thing I want you to notice is the following. When we apply an ac potential

the response is not immediately a steady periodic response. This theta value increases and

then stabilizes after some time.

We have seen this before when initially we looked at an RC circuit if I just take the Fourier

domain and calculate the resistance here, use the resistance here, use the resistance here and

use the capacitance here, I can find the impedance, but if I supply a sinusoidal potential it will

take some time before it gives me the steady periodic result and if I take the steady periodic

result and use Fourier transform I will get the same expression for impedance.

If I take the response in the beginning before it stabilizes I will actually not get the impedance

that you would get by adding this as R1 + 1/1/r2 + j omega c2. This is the expression we get

when we use Fourier domain or frequency domain. So out here by using numerical method

when you integrate you realize that it will come to steady periodic result only after some

time, it takes some time to stabilize.

In the beginning it starts it close to 0.8, the fractional surface coverage was close to 0.8, it

increases and it oscillates around a value which is probably close to 0.91 or 915, if you just

read off the graph you can see that after some time when we are close to 0.09 to 0.1 second

that is close to 100 milliseconds, it has stabilized. So this insect shows the result close to this

value and this inset shows the result close to this value.

So it takes some time to stabilize and give steady periodic result. Second point is it does not

oscillate around the initial value, it oscillates around at different DC bias.
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So the summary is the response is not steady periodic in the beginning. The average value of

theta after stabilization is different from the steady-state value. If I just apply dc potential, I

will get a steady surface coverage value. If I apply AC on top of this average potential is still

Edc, but the average surface coverage is not theta ss and how long does it take to stabilize,

what will  be the average surface coverage when it  is oscillating,  when it is under steady

periodic condition.

This will vary with the applied perturbation, amplitude of the perturbation, it will vary with

the frequency, we will do that analysis later. Right now we will say we will wait for sufficient

time to get steady periodic response and after that we will subject this to Fourier transform.
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So we will record the data after stabilization, record or save the data. We will calculate the

current at least for 1 cycle, it is probably better to do it for many more cycles and then subject

the current to Fourier transform. Once you subject the current to Fourier transform you will

get Fourier series, constant coefficient, coefficient corresponding to sin omega T and phase,

magnitude and phase for a sin omega T.

Magnitude and phase for 2 omega, magnitude and phase for 3 omega and so on. If you want

to calculate the impedance, I can calculate the magnitude of the impedance by taking Eac0

and the magnitude at 1 that corresponds to omega. If you want to calculate the phase, phase is

0 for the potential, phase whatever we calculate or get for the current we can subtract that and

get the phase of the impedance and once you do it for one frequency, you can do it for other

frequencies and then generate the spectrum.
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So in order to implement it we can give the parameter values. Previously we have seen how

to calculate the theta. In order to implement it correctly we have to wait for some time. So we

have to say wait for in this case I would say wait for 100 millisecond or wait for 0.1 second

and then take results or at least wait for 0.05 seconds and then take the cycles. So in order to

do it correctly it is good to wait till a complete cycle is done.

So  we  calculate  the  number  of  cycles  that  one  needs  to  wait  so  that  the  response  has

stabilized and then we have to integrate it and whatever value of theta where it ends that

should be the initial value for the subsequent integration that is you apply sinusoidal potential



wait for some time and then take the data. So the theta value and the current value should be

at that end.

So we calculate the theta values and then the last value of that theta should be the initial value

for the next integration. So until now we have been waiting, now we are going to record the

data. So this num cycles tells how many cycles we want to use to record this, at certain time

interval you can do the integration and once you get the theta values you can calculate the

rate constant, you can calculate the current using this expression.
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And then you will remember that if I give a sin wave like this I of course give discrete points

here. For this implementation in the Matlab, I should not give all the way until this, I should

actually give one point less, so I can give up to this and then Matlab will assume that we are

going to replicate it and then do this Fourier transform. So I find the length of this current and

then give one point less.

If you want to look at the response at fundamental I should look at this second term in the

series. If you want to look at the response at second harmonic I should look at the third term

because in Matlab first term corresponds to the dc, second term corresponds to omega, third

term corresponds to 2 omega and so on if you are using one cycle. If we use many cycles the

Fourier transform will give you response like this 0.

Let us say we used 10 cycles, 0.1 frequency, 0.2 frequency and so on and then 1 frequency,

1.1 frequency and so on because the more number of cycles we give the better resolution



meaning instead of going from 0 to 1 in one step it will go in 10 steps or n steps, n number of

cycle will give you n steps. So correspondingly we should look at the right coefficient based

on number of cycles and then take the value for the first harmonic.

And because of the way it works you have to multiply by 2 to get the magnitude, you have to

add pi/2 to the phase. Now we get the current magnitude and phase and to calculate  the

magnitude of the impedance Eac0/iac0 will give you the magnitude of the impedance. Phase

of the impedance is basically 0 – the phase of the current and the nonlinear impedance ZF

nonlinear  is  nothing  but  Z  e  power  j  phi  where  phi  is  the  phase  of  the  impedance  and

magnitude of course is mod Z.
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That  is  an example,  if  I  give 20 millivolt  at  1 kilohertz  few time intervals  here right,  1

millisecond I would get one cycle, few time intervals I got some numbers correspondingly dc

potential  of 0.2 + 20 millivolt  sinusoidal will  give me a value like this  after  waiting for

sufficient  time  when  we  continue  with  the  integration  these  are  the  theta  values  and

correspondingly I will get current value.

Of course I have truncated it would give many more decimals, I have truncated it so that we

can see it  easily. These numbers are not identical  0.8 and 0.8, these are actually  slightly

different,  but  you  get  the  idea.  Now take  this  current  and  the  time  interval,  this  is  the

sampling interval and subject it to Fourier transform. Once we subject it to Fourier transform

I will get results like 0 f 2f and so on.



This is the raw value it is dc, this is a complex number, this is also a complex number, this is

also complex number. After 4f it is going to be 0, here I have used only 1 cycle. Therefore,

after  the  first  dc  bias  next  term  is  the  response  at  fundamental.  I  had  to  multiply  the

magnitude by 2 and add pi/2, what I also want you to note is even though I am applying 20

millivolts it is actually fairly small perturbation.

There is some response, a small value at second f, there is even a smaller value, but nonzero

value at the third frequency only for fourth and fifth harmonic we see it is pretty much 0.
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And if we do it for a set of frequencies we can get the results and plot it in complex plane

plot, 1 millivolt and 20 millivolts, you get 2 semicircles for a set of kinetic parameters, 1

millivolt is given as a dashed line, 20 millivolts given as a circle and you can see they pretty

much overlap, they show 2 semicircles. This is the value at low frequency and this is just an

expanded version at the high frequency and mid frequencies.

The response at  100 millivolts  is  given by their  green color square.  The response at  150

millivolts is given by blue triangles. I want you to see this. This will correspond to charge

transfer resistance and this values correspond to polarization resistance. When I increase the

ac potential this is going to settle somewhere here. So 1 millivolt to 20 millivolt there is not

much of a difference, 20 to 50 the nonlinear charge transfer resistance increases.

So at 20 to 100 it increases, 100 to 150 it again increases. So Rt nl increases with Eac0 for

this case. Earlier example where we have looked at simple electron transfer reaction, when



we increase the perturbation amplitude Rt actually decreased, but that is not universal or T

can increase, it may increase or it may decrease. Next I want to look at polarization, nonlinear

polarization resistance, there is a low frequency value.

1 and 20 twenty millivolts it is pretty much the same 20 to 100 it decreases, 100 to 150 it

actually increases that means if I plot Rpnl with 120, 100, 150, not necessarily drawn to scale

it is constant, constant, it shows an decrease here and then an increase here. We do not know

whether it is the minimum here, it is just to say it is not monotonic.
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So to summarize for this reaction two-step reaction with adsorbed intermediate we have to

take the mass balance equation and the current equation. We do not have to expand this in

Taylor series or Fourier series, just integrate the mass balance equation, first find the steady

state values, use that as the initial point and use numerical integration, take the mass balance

equation and integrate it.

So generate sinusoidal potential, solve mass balance equation using a ODE solver. We have

used Matlab and ODE 45 or ODE 15S, you can use any similar software, you should be able

to do the integration. Recognize that it takes some time for the response to stabilize, wait for

certain time and then start recording the data and this is true even when you do experiments

because the system takes certain time to stabilize.

Once you have waited for sufficient time and start recording the data save the current data as

a function of time, subject that to Fourier transform and record the values that dc record the



response at, fundamental response at higher harmonics, both the magnitude and phase and

then you can calculate the impedance, you can plot the current response at any harmonic as a

function of frequency in Bode plots.

So we saw that they take some time to stabilize what we would do in the next class is to look

at the effect of changing perturbation amplitude look at the effect of changing frequency and

then get an idea of how these things affect stabilization time, how these parameters affect the

average value or mean value around which this stabilizes. After that I also want to discuss

how  to  estimate  the  charge  transfer  resistance  and  the  polarization  resistance  for  any

perturbation amplitude.

For  small  perturbation  amplitude  we  know  we  can  linearize  the  equation  and  get  an

expression for RP and RT in fact for the entire impedance spectrum. For large amplitude

perturbation it is not possible to get an analytical expression for any reaction in general, but

for many of these cases we should be able to estimate the charge transfer resistance and we

will be able to calculate the polarization resistance without going through the integration. We

will stop here today.


