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So in the previous class, we have seen the background for the nonlinear EIS okay. We have

seen that if you apply large amplitude perturbation, you can get higher harmonics, when you

measure the impedance that impedance will depend on the perturbation amplitude okay. If I

give a small Eac0, the impedance will be independent of the amplitude. If you give a large

Eac0, it can change okay.

And if I give large enough, it will definitely change. In order to understand or analyze this

correctly, we need to  have good mathematical  background;  specifically  we have  to  have

background in Taylor series expansion, in Fourier series expansion and in special functions.

One type of special function called modified Bessel function okay. I want to give a very brief

introduction to the data acquisition okay.

Later, we will see detailed information on what we should do to get good quality data for

nonlinear EIS. In the beginning, I just want to give you a very quick or brief introduction and

then we will move on to calculating nonlinear EIS for a simple electron transfer reaction. At a

later stage, will go for reaction with adsorbed intermediate, we will go for more complex



cases where solution resistance plays a role. So right now, we will  start  with this simple

electron transfer reaction okay.
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So I have a potentiostat which is connected to the cell. You have to apply a sinusoidal wave,

so we can apply a sinusoidal potential  using what is called a function generator  and that

potential can be added to any dc bias that we want to give in the potentiostat and you can get

the current. It is a good idea to measure both the potential that is applied onto the cell and the

current that is measured from the cell okay.

We want to apply a dc bias and an ac potential, sinusoidal potential but we want to also make

sure that the applied potential is actually correct okay. So the current that comes out, it can be

subjected to Fourier series analysis. There are different ways of doing it, one method is to

convert that current using an analog to digital board, it is called A to D and then use Fourier

transform in the software.

Let us take the current values as a function of time and then subject that to Fourier transform.

Another method is to use a hardware Fourier transform analysis. That is when it is measured,

at that time itself subjected to Fourier transform within the hardware and then just get the

Fourier coefficient.  Another method is called phase sensitive detection in which case you

multiply this by a sine wave, this can be done after digitization, it can be done in the analog

domain itself.



And then find out the component at omega or at 2 omega whichever frequency we want to

look at okay. So that is using what is called lock-in amplifier, it can be done within software,

it  can be  done in  the  hardware either  using FFT analyzer  or  using lock-in amplifier. Of

course, if you want to do galvanostatically, it is possible to do provided we give a dc bias if

necessary, we give a dc bias and a sinusoidal current and then measure the potential and then

subject it to any one of these techniques.
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Now I want to start with a reaction which is Redox reaction. Fe 2+ is oxidized to Fe 3+ and

with the release of electron, we are going to assume that there is no mass transfer limitation

that is it is our rapid mass transfer, concentration of these two species are constant. Under that

condition, we can write the faradaic current as Fk1 concentration of Fe 2+, of course k1 is the

forward rate constant; k-1 is the reverse rate constant.

We can also write it as kf and kr, kf-k reverse Fe 3+ concentration and of course each of these

rate constants are going to be written in terms of potential for forward reaction as well as the

reverse reaction. Now total potential is dc+ac and rate constant value at the dc potential I can

write it as kf dc and kr dc. So when I expand this, I would get an expression saying F*kf dc

exponential of bf Edc with the concentration of Fe 2+ and correspondingly for the reverse

reaction.

And ac is given by ac0 amplitude and the frequency omega and we want to write this faradaic

current in Fourier series as I0 corresponding to the constant term i1 which is the magnitude of



the response at fundamental  with phase psi  1. I2 is the magnitude of the response at the

second harmonic with the corresponding phase psi 2 and so on for any of this.
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Now exponential of a sin theta, we know it can be written as an infinite series in the modified

Bessel function.  It  is actually a generating function.  Likewise,  for e power bf e Eac0 sin

omega t.  We can write in terms of the modified Bessel function at I0, I1, I2, I3, etc and

similarly we can write it for the reverse reaction. So we have a fairly large number of terms

but we will look at first few terms okay.

If you want to look at the dc component of this response, if you look at this, you can separate

this  as  the  one  corresponding  to  the  forward  reaction,  one  corresponding  to  the  reverse

reaction. For the forward reaction, you have Faraday constant, rate constant at dc potential,

concentration; these are all fixed numbers for a given dc potential. This is the only constant

coming out of this expression.

And for the reverse reaction, the first term is the one that is a constant. So I can write it as

Faraday constant kf dc Fe 2+*I0 evaluated at bf Eac0 and correspondingly for the reverse

reaction.
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In case of the response at fundamental which we are denoting as iF ac at omega, in case of

response at the fundamental, it is going to be at sin omega t which means m has to be 0, here

also m has to be 0. When m is 0, we are going to get these terms and 2 I1. So I have taken the

2 out of this, 2 I1 bf Eac0-here also kr dc Fe 3+ 2 I1 br Eac0. At second harmonic, you can

correspondingly find, it is going to be cosine.

Third harmonic, it is going to be sine but then it will come with a negative sign and so on you

can do it for any harmonic. Now if I measure the impedance,  if I give a large sinusoidal

potential but I just use a traditional or normal equipment and measure the impedance, I am

going to get Eac0/iF ac at omega. So it is going to subject that to Fourier transform, get the

response  at  fundamental,  take  the  magnitude  and  divide  to  get  the  magnitude  of  the

impedance.

Here because it is sin omega t, the phase difference is 0. Therefore, we are going to look at it

as a simple resistor. The expression we get is Eac0 by the entire iF ac at omega.
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Now what happens when Eac0 goes to 0 that is when we use small amplitude perturbation,

we should get the same expression as what we got before with linearization. So limit of x

tending to 0, I1 x is going to be x/2, instead of x we use bf Eac0. We are going to get bf

Eac0/2. This multiplied by 2 will give us f kf dc Fe 2+ concentration bf. Similarly, this side 2

I1 br Eac0 will come to just br Eac0.

So these 2’s will cancel out, Eac0 will cancel out and you will get an expression that is the

same as what you got after linearization. So certain points I would like you to note. One is the

faradaic impedance is a constant at a given dc and at a given Eac0. Constant here meaning, it

is independent of the frequency that means it acts like a resistor. Now if it changes Eac0, the

value of the resistance will change.

It is still independent of frequency but it will depend on Eac0 when Eac0 is large. When Eac0

is vanishingly small,  very small,  then that ZF that I calculate here will be independent of

Eac0 which means these are cancelling out. It is just going to be a simple resistor, so this

aligns with what we expect to see. When Eac0 is large, the impedance is going to depend on

the Eac0 value.

When it is small,  the impedance value is independent of the Eac0 value. So basically if I

model it as a parallel combination of double-layer capacitance under faradaic impedance, I

will  get  ZF, ZF here is  a function of Eac0 when Eac0 is  large.  ZF here is just  a simple

resistance, constant resistance when Eac0 is small. When it is large, it is still the resistance

but it depends on Eac0 okay.
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Now if I look at higher harmonics, I can look at 2 omega, I can look at 3 omega. They are

also fixed numbers, meaning if you look at the coefficient of 2 omega t, this is independent of

omega.  The coefficient  of  this  is  independent  of  omega,  the  phase  difference  here is  90

degree, cosine and sine are off by 90 degree. So nth harmonic current if you plot it in Bode

plot if I say In omega from low frequency to high frequency, it is going to be a constant.

If you look at the phase value, it is going to be 0 for odd harmonic; it is going to be 90 degree

for even harmonic okay.
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So we got analytical expression here because we are able to expand exponential of a sin theta

in Fourier series. Most of the cases, we will not be able to get analytical expression. So we



have few choices; one write in Taylor series, expand up to some terms, instead of linearizing

or instead of writing only up to the first frequency term, you can write for a few more terms

and then truncate it and then rearrange, that is one possibility.

Second, in many cases you can also write an approximate Fourier series. This was published

in 1997 by Professor David Harrington in Department of Chemistry University of Victoria in

Canada. I had taken the image from the website. So for large amplitude perturbation, he has

shown how to calculate it for a few reactions including reaction with adsorbed intermediates,

for the response at fundamental, for the response at second harmonic, you can use numerical

method.

So we have done some research on that  and I  will  describe how you can use numerical

method to handle situations where we do not know how to get analytical expression. So if

you want to look at the example of Taylor series analysis here, potential of course is Edc+Eac

where Eac can be considered as a small number, it can be a large number also. When you

write this in Taylor series, we want to write current as a function of potential.

Potential at x0+h where x0 you can replace by Edc, h you can replace by Eac. Now we would

write in Taylor series as f of x0+derivative first order derivative*h second order derivative*h

square/2 factorial and so on and in this case, we are going to write it as f at Edc, f prime at

Edc, f double prime second derivative at Edc correspondingly Eac, Eac square and so on.
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And then we are going to truncate after certain terms. So when you write this in case we did

not know how to write this exponential of sin theta, we know of course that we can write the

exponential of sin theta as Fourier series with modified Bessel functions as coefficients but in

case we did not know, we can still write it as sin theta, sin square theta, sin cube theta and so

on and truncate it after certain number of terms.

In this case, truncate it after 3 terms and then rearrange it, use power law, write it in Fourier

series for sin square, sin cube, etc and then rearrange it.

(Refer Slide Time: 14:47)

Since you have done this example before, I will go through it little fast okay. So we know that

the coefficient, constant coefficient will get terms from sin square, sin cube will give sin theta

and sin 3 theta. Sin power 4 will give constant coefficient and sin 2 theta actually cosine but it

is alright, sin 2 theta with phase sin 4 theta okay. So if we look here, constant term can be

written as 1+Eac0 square+Eac0 power 4 etc and similarly for the reverse reaction.

Response at fundamental, response at sin omega t can be written as Eac power 1 Eac power 3

Eac power 5 and so on. Response at 2 omega t can be written as Eac square Eac power 4 Eac

power 6 and so on and 3 omega t of course as cube+Eac power 5+Eac power 7 and so on.

Now if you look at it, if Eac0 is small or moderate, I can say this is roughly 1. This is roughly

proportional to Eac0, this is roughly proportional to Eac square, this is roughly proportional

to Eac cube.



That is why if I take the Fourier component at n omega, at sin omega, sin 2 omega, sin 3

omega, sin n omega at small and moderate values, it is going to be Eac0 power n. When you

go to larger amplitude, I cannot neglect this, I cannot neglect the further terms. So it will not

be always proportional to Eac power n, only at small and moderate values it is going to be

proportional to that.

At higher values, it is going to be dependent. In this example for this reaction, it is going to

dependent as described by the modified Bessel function. For other reactions, the dependence

is hard to get because we do not have an analytical expression. So this is just a reemphasize

of the Taylor series expansion truncating after n terms and then rearranging will approximate

the Fourier series results.
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I will also describe how we can do numerical simulation for this. It is not necessary to do

numerical simulation for this but if we learn how to do the numerical simulation for this, later

when we go to other examples where numerical simulation is the only way or probably the

easiest way, then it will be easy to follow how to do this okay. So we know the expression for

faradaic current here.

So  numerical  simulations  what  we  do  is  the  following.  We first  write  the  time  domain

expression for the current and apply a sinusoidal potential so we say generate the sinusoidal

potential as a function of time, meaning we have a series of time and correspondingly we

have series of potential values. So we have a time going from 0, 1 millisecond, 2 millisecond,

3 millisecond and so on.



Correspondingly, we have potential starting at some value and then changing as given by this

sinusoidal equation and then calculate the current as a function of time and then subject this

to Fourier transform and get the Fourier series coefficients okay. We can record the values at

dc; we can record the values at fundamental, second harmonic and so on. Once you know the

response at fundamental, you can calculate the impedance.

Once you know the response at  any other  harmonic,  you can plot that  in  Bode plot,  the

current response in Bode plot.
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This was published in 2011 by our group. This is an example with a simplified version of the

reaction instead of taking Fe 2+ going to Fe 3+ with an electron release. We have taken a

simpler equation where metal dissolves into the solution, reverse reaction is neglected. So for

certain value of the rate constant and certain value of the exponent, bf are given by b1 here at

dc bias of 0.4 voltage with an assumed capacitance double-layer capacitance of 10 microfarad

per square centimeter.

For different ac perturbations right, 5 millivolt and 10 millivolt give you more or less the

same spectrum. So 5 millivolt results are given as blue squares, 10 millivolt results are given

as green triangle and you cannot really distinguish between them because they pretty much

overlap. If we increase the amplitude to 100 millivolt, the spectrum will still be a semi-circle

but the charge transfer resistance is going to be less.



If we increase this to 200 millivolt, it is given by the black color circles here; charge transfer

resistance decreases a lot. So it is still modeled by a double-layer capacitance with the charge

transfer resistance but this is a much smaller value compared to what we got in 5 millivolts or

10 millivolt  perturbation.  So essentially  what  is  done is  we got  a  time,  we calculate  the

potential  using the first  expression,  we calculate  the current using the second expression,

current and then we subject this to Fourier transform.
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So in summary, we can write the current results in Fourier transform because here we know

how to get the analytical expression, we can use modified Bessel functions. So it is possible

to get an analytical expression for impedance, nonlinear impedance. It is also possible to get

analytical  expressions  for  the  current  response  at  any  frequency, second  harmonic,  third

harmonic and so on.

In other reactions, it may be possible to use approximate Fourier series; you can refer to the

publication by Professor David Harrington. In some cases, you can also expand in Taylor

series and rearrange but when you do that you have to be very careful because when you

expand too many number of terms, the chances of mistake become more okay. You can also

use numerical method.

Numerical method has some advantages and disadvantages but after  describing it for few

examples I will discuss with you on what are the advantages and disadvantages. You can

apply  it  for  a  variety  of  reactions.  It  is  possible  to  analyze  variety  of  reactions  using



numerical method. It is not that easy to generate Fourier series or Taylor series expansion and

get accurate values for all reactions.


