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So earlier we have seen some applications okay. Now I want to introduce a technique called

nonlinear EIS okay. So we normally measure the response at the fundamental that is we apply

a potential  sinusoidal wave at  some frequency and measure the current  at  that frequency

okay. It is possible to conduct this measurement or perform these measurements at higher

harmonics; it is also possible to increase the amplitude.

So far we have assumed that the perturbation that is if I send a sine wave then the amplitude

is  small  maybe  5  millivolts,  maybe  10 millivolts  but  we  can  linearize  the  equation  and

analyze that is what we have assumed. What if we send a larger amplitude or what if we

apply a larger amplitude perturbation? So I want to go through the description of nonlinear

EIS, what is meant by nonlinear EIS and introduction to the terminology and what happens if

you acquire the spectrum at large amplitude for a simple reaction okay.

We will go through the description or the calculations at a later stage. Right now, I just want

to show you and I also want to describe what would be the corresponding values for a charge

transfer resistance and polarization resistance if we apply large amplitude perturbations. It



needs a certain level of mathematics to understand nonlinear EIS. So I will spend some time

on giving you the background mathematical background necessary for this.

So it uses what is called modified Bessel functions, so we will spend some time on that and

we will also look at Taylor series expansion for a small change when the change is described

by a sine wave okay and we will compare with Fourier series expansion. So you should be

familiar with Taylor series, Fourier series and some special functions okay. This helps you

understand nonlinear EIS and helps you understand and use it well.

(Refer Slide Time: 02:23)

So first impedance is basically the ratio, vector ratio of potential to current, we apply a small

amplitude perturbation del E and we monitor the current or change in current del i and that is

differential impedance, we normally call it as impedance okay and that ratio of del E/del i that

is actually not a function of del E that is the assumption. Del i is proportional to del E that is

another way of saying it okay and this is valid if the system is linear.

If  the  system  response  cannot  be  linearized,  then  strictly  speaking  this  is  not  a  correct

definition of impedance. It is just the transfer function; it cannot be called as impedance but

then lot of people use the terminology nonlinear EIS to indicate the ratio of del E/del i. Then,

it is a function of del E. Suppose I applied 5 millivolts perturbation; 5 millivolts sine wave

and I get a impedance spectrum.

If I apply 10 millivolts and if I get pretty much the same impedance spectrum, then I can say

that  5 millivolts  or 10 millivolts,  this  system gives a linear  response okay. If  I  go to 50



millivolts, if I go to 100 millivolts perturbation, then the spectrum that I get may be different

in which case I should say nonlinear effects are incorporated okay. You can also measure the

current response at higher harmonics.

If I apply at 5 Hertz frequency, I will get signal at 5 Hertz, I might also get signal at 10 Hertz,

15 Hertz, 20 Hertz okay. When the system response is in the linear regime, those signals at

the  higher  harmonics  10  Hertz,  15  Hertz,  etc  they  will  be  negligible.  When  the  system

response  is  in  the  nonlinear  domain,  then  we  will  expect  significant  signal  at  those

frequencies.

For example, if I apply 100 millivolts sine wave, a sine wave of 100 millivolt amplitude with

5 Hertz as the frequency, I will get a response at 5 Hertz but I will also get some response at

10, 15, 20 Hertz okay. Most of the times when researchers acquire data at higher harmonics,

most of the times they would present magnitude data, only in few cases they present the

phase data.

Basically, it becomes difficult to get good quality data especially the phase. So, so far I have

described examples with pseudo-potentiostatic mode that means we apply a dc bias or we

may not apply any dc bias, zero bias. We control the potential and monitor the current and

then you can measure at higher harmonics, you can measure at the fundamental and then use

this data for analysis.

You can also use current as applied input that is you can use under pseudo galvanostatic mode

where you can use a zero or nonzero dc bias for the current and then apply a sinusoidal wave

in the current and measure the potential okay and then you can take the ratio with the ratio of

the potential to current and that will also give us the nonlinear EIS data. So the idea behind

applying NLEIS is this.

Electrochemical systems, we know by and large you are going to get nonlinear response, the

systems are nonlinear and a lot  of times we used FFT based equipment  or instrument  to

obtain and analyze the data. So FFT based instrument would anyway give us the response at

fundamental as well as at higher harmonics. So why not use them okay, so that is idea. We do

not see as many publications with NLEIS as you see with EIS.



EIS is used extensively whereas NLEIS is used only in very few cases. The main reason is

the  analysis  is  challenging  okay,  even  at  fundamental  if  we  apply  a  large  amplitude

perturbation, we will get good quality data that means signal-to-noise ratio will be good. So it

is not that difficult to get NLEIS data especially at fundamental but calculating the NLEIS

response for a given model, given reaction kinetics that is more difficult.

So  experimentally  acquiring  data  is  not  that  difficult.  If  you  want  to  acquire  at  higher

harmonics, you need some effort but acquiring at fundamental it is easy but analyzing the

data is harder and that is the reason it is not seen that frequently and if it comes to higher

harmonics, the signal-to-noise ratio is poor, usually it is poor. So you do not get good quality

data that easily and then analysis is anyway difficult so it is less frequent.

So as I mentioned earlier, NLEIS involves a good understanding of Taylor series. If you have

a good understanding of Taylor series, Fourier series and special  functions and numerical

integration  methods using a software,  this  will  actually  help us  get  the maximum out  of

NLEIS technique.

(Refer Slide Time: 08:10)

So I will start with some example, simple examples okay. You have one relationship, y=2+5x

and if I draw y versus x, it  is going to be a straight line okay and another expression is

y=4+3x cube, I just made up this expression and this is going to give your curve. If you plot y

versus x in a reasonable range, you would see a curve, 0 to 10 for example of x value going

from 0 to 10, y value go from whatever numbers and you would not see a straight line, you

would see a curve.



And let us say x is replaced with sine omega t okay, y is going to give you a sine omega t that

means if I apply a potential which is a sine wave, the current response here given by y is also

a sine wave. What happens when I look at an expression which has a nonlinear relationship

okay? X cube, now we replace x cube with sine cube and sine cube can be written using the

trigonometric identity as 3 sin omega t-sin 3 omega t and all of these divided by 4.

You can substitute and rearrange, you would find that you have applied a sine wave, you

would get a response at omega, you would also get a response at 3 omega, that means we

apply a frequency of 5 Hertz, we will get response at 5 Hertz, will also get a response at 15

Hertz for this particular expression. If you have another nonlinear expression, you might get

at 10 Hertz; you might get at 20 Hertz okay.

You might  get  at  10,  20,  15 all  those frequencies  okay. So it  is  just  to  indicate  that  the

relationship  between  potential  and  current  are  nonlinear  then  you  should  expect  higher

harmonics. The strength of the signal, the amplitude of the higher harmonics may be small

but if the system is nonlinear, you should expect a high harmonics.

So  what  we  have  done  so  far  is  assume  that  we  are  applying  only  a  small  amplitude

perturbation so the strength of the higher harmonics are negligible and the ratio of response at

the fundamental okay, the del i to del E or del E/del i, either one of them is independent of del

E. This is the assumption we have made so far.

So if I apply a dc potential and on top of it superimpose an ac potential and that is given by E

here, then in general I should expect a response current response with the dc plus a response

at fundamental with possibly a phase and a response at second harmonic with some phase,

third harmonic with some phase. In this particular example, you have seen zero phase but in

general you can expect some phase for each of these.

So we would call i1 as response at fundamental, i2 as response at second harmonic, i2 along

with psi 2 okay. In the same way, you can also use this in galvanostatic mode or pseudo

galvanostatic  mode  where  the  applied  current  is  given by idc+iac0  sin  omega  t  and  the

measured  potential  can  be  written  in  Fourier  series  with  the  dc  offset  response  at



fundamental, response at second harmonic, etc. For each of this, you have an amplitude under

phase okay.
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Now if I take a simple electron transfer reaction okay, electron transfer reaction is something

like A going to B with an electron okay. If I apply a large positive potential with respect to

open circuit potential, I can ignore the reverse reaction and I can assume that pretty much

only the forward reaction happens. Under those conditions, I can write the current as faradaic

current as Faraday constant, rate constant k and the concentration of the species A.

We will assume that mass transfer is not a limitation,  it  is very rapid. So we apply a dc

potential and on top of it we have applied an ac potential. I have made up some numbers here

for certain rate constant value 10 power -6 centimeters per second and for this we have used

this expression k10 e power b1 E. So the exponent b1 is 19 Volt inverse. The dc potential for

example in this case, I had taken as 0.2 Volts, 5 millimolar is the concentration of A and we

apply a 5 millivolts ac potential.

If I apply 5 millivolt ac potential, I can calculate the value of k for these k0 or k10 and b1 and

this dc potential and I have taken the example at 1 Hertz. The potential versus time would

look like this, a 5 milli  Volts  ac would look like this  and the current in micro amps per

centimeter square would also appear as a sinusoidal current and there is no phase difference,

you would get an impedance.



For the same reaction, I can write this as i0+i1 sin omega t+phi 1 or +psi 1 and psi value is 0,

i1 I can calculate the value, I can take the Fourier transform and calculate the value and pretty

much I can say this is sinusoidal wave for the current. What happens if I apply 100 millivolts

AC,  100  millivolts  amplitude  of  AC? The  potential  looks  sinusoidal  and  with  the  same

frequency of course.

The  current  response  is  definitely  not  sinusoidal,  it  is  not  a  simple  sine,  it  is  nonlinear

response and if you do Fourier transform, you would find that this can be written as sum of

many sines with a dc offset and this should be written as i0+i1 sin omega t+psi 1 i2 sin 2

omega t+psi 2, etc. That means the response contains second, third, fourth harmonics. So this

is definitely a nonlinear response.

This is just to show you that you would expect a nonlinear response when you use large

amplitude perturbation and we have taken a very simple reaction and we have assumed only

the forward reaction is significant, reverse reaction is neglected because we are at a dc bias

where forward reaction would happen and reverse reaction is not going to happen.

(Refer Slide Time: 15:22)

Definition of impedance is del E/del i and when we look at the response at fundamental then

it is easy to define nonlinear impedance. I would say nonlinear impedances Eac0 by iac at

omega. So this is faradaic impedance is at F when Eac0 is small and the response contains

only response at fundamental and not at higher harmonics, then this is actually the correct

definition of impedance.



When Eac0 is large and the response current response contains response at fundamental and

at higher harmonics; we can still take the response at fundamental and take this ratio, this in

that case Z F, NL that is going to be a function of Eac0 okay. These units are going to be ohm

centimeter square, the current is current density actually, so it is going to be ohm centimeter

square for this impedance.

And when Eac0 becomes smaller and smaller, if I start with 100 millivolts perturbation, I

decrease it to 50 millivolts, the impedance response will be little different; decrease it to 20

millivolts, it is going to be different; from 20 millivolts to 10 millivolts, it would not be that

much different for a given set of parameters okay. When I go to 1 millivolt, it is pretty much

going to be independent of the applied perturbation.

So  as  Eac0  tends  to  small  values,  tend  towards  0,  Z  tends  towards  the  expected  value,

expected meaning when we expect it to be under linear regime. So it is going to the constant

impedance value for a given frequency. Now it is easy to extend this and say okay if I go to

higher amplitude, I will still get a number except that it is going to depend on this Eac0 and

that number I would call as nonlinear impedance.

We will measure for the entire system, so we will call that as nonlinear impedance of the

system. For example, for a simple electron transfer reaction with a slightly different set of

values  for  these  parameters  with  another  dc  bias  and  with  an  assumed  double  layer

capacitance, we have simulated or calculated the nonlinear impedance. Later, we will learn

how to calculate this, right now just take it for granted that this is correct.

So for this system if we apply 5 millivolt AC, we would get a spectrum that is given by the

blue color squares and blue color squares as well as green triangles are more or less merged

together or more or less identical. So if I apply 5 millivolt or 10 millivolt, I get the same

impedance spectrum. That means this system; the response is still in the linear regime when

we are at 5 or 10 millivolts.

If I go to 100 millivolts, the results that you would get are given by the red color diamonds,

so it  is going like this.  It  is definitely different  from what we see at  5 millivolts  and 10

millivolts.  So  we  would  say  this  is  a  nonlinear  response.  We are  still  measuring  at  the



fundamental that means we apply 5 Hertz; we look at the response at 5 Hertz. We ignore the

response at other frequencies. We ignore the response at dc.

We applied 20 Hertz; we look at the result at the same frequency. We apply 1 millihertz, we

look at the result of the same frequency and then of course when you go to 200 millivolts, it

is quite different, it is given by the dark circles or black circles and you can definitely say up

to 10 millivolts, this is in the linear regime, beyond that it is in the nonlinear regime okay.

(Refer Slide Time: 19:16)

Okay so we are able  to define or we are able to come up with a definition of nonlinear

impedance when we look at the response at fundamental. When we go to higher harmonics,

there is some problem okay. So I will describe this. Let us say we measure the current at

fundamental, we also measure the current at second harmonic and we call that as iF ac 2

omega, we do not measure the faradaic current; we measure the total current okay.

But right now we are looking at the definition; we might be able to calculate the faradaic

current for a given model or a given mechanism. So we can still say alright I will take the

ratio of Eac0 by iF ac or i total ac at second harmonics 2 omega. Take the ratio, the good

thing is that also has the units of ohm centimeter square, so we can call it as impedance.

When you look at impedance, you would expect it to have units of ohm or ohm centimeter

square.

Ohm for a normal electrical system, for electrode it is usually described as ohm centimeter

square or usually given in ohm centimeter square but the problem is this, when we go to



smaller and smaller value of Eac0 okay, this definition of Z tells us that the Z will go towards

infinity and that is not the same way you would see for a response at fundamental okay. What

you want to see is ideally a case that the impedance units are ohm or ohm centimeter square.

And when you go to  lower  and  lower  amplitude  or  smaller  and smaller  amplitude,  that

impedance should go towards a constant for a given frequency okay. However, you go to

higher harmonics, the higher harmonic currents iac it need not be iF, i total or iF ac at n

omega, second, third, fourth can be 1, can be 2, 3, 4, etc n is an integer that is proportional to

Eac power n for small and moderate Eac0.

When you go to very low Eac0, it would not be proportional to this; we will see that again

later okay. At moderate values where we expect to see reasonable signal with a good signal-

to-noise ratio, this is the case. If you go to very large Eac0, you would get good signal-to-

noise ratio but then it is going to be proportional to power which is more than m. So we

would say it is definitely going to be at least as high as Eac0 power n.

And then if I take this ratio I would find that it  is Eac0/Eac0 square multiplied by some

constant. So when we go to small value of Eac0, this is going to be tending towards infinity.

If you go to third harmonic, fourth harmonic, it will tend towards infinity at a more rapid rate.

(Refer Slide Time: 22:52)

I can come up with another definition that is to say impedance at higher harmonics are nth

harmonic can be Eac0 power n and then divide by iac at n omega. In this case, I should write

it as Eac0 power 2 or Eac0 power n/n omega and that is going to be Zn omega. Problem is



units are not ohm centimeter square. The units will depend on what harmonic we are using

okay, so neither of them is very pleasant.

So generally in literature, although people say nonlinear EIS, they would frequently report

only the current  response at  higher  harmonics.  At  fundamental,  you can give the current

response; you can also give that as impedance. So usually higher harmonics are reported as

current when we use pseudo-potentiostatic mode.

Of course, when we use pseudo galvanostatic mode, we will measure the potential and then

subject it to Fourier transform, get the coefficients and then report the magnitude and phase,

mostly magnitude, sometimes magnitude and phase at higher harmonics for the potential. We

do not report the ratio of E to i or ratio of E power n to i for this.

(Refer Slide Time: 24:09)

So to refresh your memory, we have seen few terms, solution resistance,  charge transfer

resistance and polarization resistance. If we take an electrode system, this is one example. If

we have a system with one adsorbed intermediate, a clean system with rapid mass transfer,

you can get a data like this.  This is in complex plane plot,  at  high frequencies;  the total

impedance of the system gives us what is called as R solution.

So we would write solution resistance as total resistance Z total as omega tends to infinity.

Charge transfer resistance is in case we are able to model this data and we are able to isolate

and find the impedance of the faradaic reaction. What would be the impedance of the faradaic



reaction  when frequency tends  to  infinity, not  for  the total  system,  only for  the  faradaic

component okay?

At the infinite frequency limit and at the linear regime, that means Eac0 should be very small,

then we call it as charge transfer resistance. Previously, when we defined it, we would have

just written as Rt is limit omega tending to infinity ZF. Reason is we were always assuming

that we are operating in the linear regime; we did not have to explicitly say that each time but

now we are dealing with cases where the Eac0 or the perturbation need not be small and

sometimes it is deliberately made as a large value.

Therefore, we want to say or differentiate between cases where it is in the linear regime and

where  it  is  in  the  nonlinear  region.  So  charge  transfer  resistance  is  at  small  amplitude

perturbation,  high frequency limit  of faradaic  component.  Polarization  resistance is  small

amplitude perturbation, low frequency limit omega tending to zero the faradaic component.

What we measure is of course the total resistance or total impedance, so if I take the low

frequency limit, this is ZLF, this is the sum of solution resistance and polarization resistance

okay. Now this is the definition of polarization resistance, charge transit resistance, etc with

the assumption that the perturbation is small.

(Refer Slide Time: 26:26)

If  the  perturbation  is  large,  you can  still  get  the  data.  So  what  you have  seen  earlier  is

complex plane plot, this is just a representation in Bode plot to say high frequency limit is

going to give us the solution resistance, the low frequency limit is going to give us solution



resistance plus polarization resistance and the next saturation point here which corresponds to

the point here tells us that sum of charge transferred resistance and solution resistance.

This could be modeled by a circuit like this. You can also model by other equivalent circuits

and get the expression for polarization and charge transfer resistance. Now if I apply a large

amplitude perturbation, this spectrum may change and become for example like this. I can

still call this as polarization resistance and this as charge transfer resistance except that I have

to denote that they are nonlinear values and they depend on Eac0.

So in that case, we drop the requirement that the Eac0 should be small. Eac0 can be large, can

be small in general Rt and Rp can depend on Eac0 and we would describe those Rt as Rt, NL

and Rp as Rp, NL okay. So at the fundamental as we mentioned before, it is easy to measure

the nonlinear impedance data.

(Refer Slide Time: 27:59)

Now I want to give you some background required for getting better handle on this system.

One,  there are  functions  called  special  functions  okay. We are familiar  with exponential,

sinusoidal,  cosine,  etc  but  there  are  many  other  functions,  one  of  them is  called  Bessel

function and another is called modified Bessel function okay. Modified Bessel function is

denoted by In and Kn.

In is  basically  solution of  this  differential  equation  x square y double  prime+xy prime-x

square+n square y. This case, I have taken n to be integer, it is also possible to get a definition

for non-integer values, we are not going to worry about that, we are not going to use them so



we are going to worry only about In where n is an integer okay. There are two solutions, this I

is called modified Bessel function of the first kind and K is called modified Bessel function

of the second kind.

And we would use I and therefore we will restrict ourselves to I. There is a type of function

called Generating function. It is relevant for us; therefore, I am describing it here. If you write

exponential of a sin theta, it is possible to expand that in Fourier series and that would give us

I0 of a that is modified Bessel function of first kind with order 0, the value of a is used

here+2 times sigma going from 0 to infinity, Fourier series going from sin omega t’s or sin

theta, sin 2 theta, sin 3 theta up to infinity.

But first we described only the odd functions, so -1 power m this is again modified Bessel

function of order 1, 3, 5, etc multiplied by sin theta, 3 theta, 5 theta,  etc. So all  the odd

functions come in terms of sin, all the even functions are given here, m going from 1 to

infinity, just note down, in the previous case m is going from 0 to infinity, it is going from 1

to infinity, it is an index value.

This is an index value, right now we will just focus on this. This comes in the same way

except that we get a cosine that means it is a sine wave with pi/2 offset and if I want to get the

value of In of x, In of 1, In of 0, In of 0.5, In of -2, any of those values, I have to use this

series okay. So it has x/2 power n and then it goes with an index of k going from 0 to infinity,

k factorial n+k factorial in the denominator, x/2 whole thing raised to that power 2k in the

numerator.

Of  course,  we  do  not  need  to  do  the  summation.  If  you  have  access  to  software  like

MATLAB, you can just call this Bessel function and in MATLAB this will be called Bessel i

n, x. You can give the integer value, maybe n=1, n=2, n=0 and then x whatever value you

want to put we can substitute there and similarly in other mathematics software, you would

be able to get access to this function. It is just for us to know how to expand this in series and

compare things.

(Refer Slide Time: 31:35)



How do they  look  okay?  I0,  I1,  I2,  I3  values  for  a  small  range  of  x  value.  They  look

somewhat  like  exponential  functions.  They  are  not  exponential  functions  but  they  look

somewhat similar. I0 when x tends to 0, I0 will tend to 1. Any other modified Bessel function,

any other meaning I1, I2, I3 all of them will tend towards 0 at different rates. So limit x

tending to 0, I0 x is 1, limit x tending to 0 In in general for integer n.

It is going to be given by 1/n factorial x/2 power n and we will use this information at the

next calculation okay. So as x tends towards 0, I1 tends toward 0, I2, I3 they all tend toward 0

but at different rates okay this is one.

(Refer Slide Time: 32:34)

Next, there is a series called Taylor series. If you are given a function f of x, we know the

value of the function at a point at x0 and we want to find the value of the function near that



point. So we move a small distant h away from the x0, we can write this function in the

Taylor series okay. So we would write f of x0+h=f of x0+the first derivative evaluated at

x0*h/1 factorial, second derivative evaluated at x0*h square/2 factorial and so on.

And sometimes we use a different notation,  we will  say f of x0, f prime to indicate first

derivative evaluated at x0. So we will call it as f prime x0, f double prime x0 and so on. Now

I want to look at the potential, E as Edc+Eac where Eac is given by Eac0 sin omega t. Instead

of looking at x0 and h, we will look at E, x0 equivalent will be Edc, h equivalent is Eac. Now

I can write current as a function of potential and I would write it as f of Edc+Eac.

That is equivalent to writing it as f of x0+h and you can substitute here, you can say f of Edc

df/dE  or  f  prime  Edc,  f  double  prime  Edc,  f  nth  derivative  at  Edc.  So  it  is  essentially

substituting for x0 and h with Edc and Eac and you get a Taylor series expansion. We have

not defined what that relationship is.

We have not expanded f of E yet okay. Still I  want to go through this for you to get an

understanding of how to write the Taylor series expansion and truncate after few terms, not

just after the first term.

(Refer Slide Time: 34:52)

So this is the expression we got in the previous page. If ac is not applied, we apply only a dc

potential, we will get a dc current. So that means F of Edc will normally denote as Idc, f

prime Edc we keep it as it is, we are just going to keep it as it is, Eac we are going to replace

with the ac 0 sin omega t. This is ac, we have done this before. This next term, we are going



to keep f double-prime Edc that is second derivative of f with respect to potential evaluated at

Edc.

We have the 2 factorial, Eac square we are going to expand this and then we are going to

write the trigonometric identity sin square is 1-cos 2 theta/2 which means here it is going to

be 1-cos 2 omega t/2. This is going to give us two terms; one is going to be a constant term

that is independent of omega, another term which is 2 omega t okay. This cos 2 omega t we

can write it as sin 2 omega t+pi/2.

So basically it is a second harmonic with a phase offset. So this should come as f double

prime Edc/4 Eac0 square-either cos 2 omega t or as sin 2 omega+pi/2.

(Refer Slide Time: 36:48)

And if we write the third series, third term, sin cube we can write it as 3 sin omega-sin 3

omega which means I can rearrange it. So I will get one response at omega, one response at 3

omega arising out of sin cube. So we will say we are going to use up to 3 terms and then

truncate because in Taylor series you can write up to infinite number of terms and then you

can rearrange them and group them or we will truncate after 4 terms, 5 terms.

The more number of terms you take; more accurate the calculation is going to be. So if I say I

am going to only take up to 3 terms, so you can write first term dc, next term is the first

response at fundamental, next term is response at second, next term is the response at sin

cube which gives us fundamental as well as 3 and you can rearrange. When you rearrange

you see the dc offset has the f Edc, it also has some contribution from the second term.



First harmonic fundamental has contribution from the normal response at sin omega; it also

has contribution from the sin cube. Second harmonic actually comes from the sin square,

third harmonic comes from sin cube.

(Refer Slide Time: 38:15)

In general, if I write in terms of sin power n omega t, we can write it as a series sin n omega t,

sin n-2 etc until we get to a constant. That means if I start with sin power 10 theta, I will get

sin 10 theta, sin 8 theta, sin 6 theta, 4, 2 and then a constant. If I start with an odd power okay,

if I start with power 7, sin power 7 theta or sin theta raised to the power 7, I would get 7

theta, 5, 3 and 1 okay.

And of course, these values are constants known constant, we just have to go through the

trigonometric identities and write this. So that means if I want to know the contribution to sin

omega t, I should look at sin cube, sin 5, sin 7 until infinity okay and likewise contribution to

the second harmonic will come from sin square, sin power 4, sin power 6, etc. If we say that

after certain time, we can truncate then up to that we should count this and rearrange okay.

When we write Eac as Eac0 sin omega t okay, if you write Taylor series up to infinite terms

or  very  large  number  of  terms,  substitute  with  the  power  equation  okay, rearrange,  then

whatever we get out of that will match with the Fourier series expansion. It is not always

possible to write Fourier series expansion for many of the functions, many of the relationship.

If you write for infinite number of terms, it will match correctly.
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If you write for few terms, truncate after some term, it will be an approximation. So Taylor

series truncated after a few terms and then substituted with power equation, trigonometric

identities, rearranged, will approximate each coefficient.
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So to complete the information on the mathematical background, we have seen Taylor series

expansion and we want to compare with the Fourier series expansion. So in general if I have

a Taylor  series expansion, I  would have Eac sin omega t  power 1,  power 2,  power 3 in

general nth power and when I write nth power that is sin omega t raised to the power n, it can

be written in terms of Fourier series.
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So if it is Taylor series truncated after few terms and then substituted with the power law and

then rearranged, what you would get is an approximation for Fourier series. Take an example

of exponential a sin theta. I can write it in Taylor series as 1, so if I write e power x I would

write it as 1+x+x square/2 factorial x cube/3 factorial and so on. Here I have truncated it after

4 terms, so I have 1+a sin theta a square sin square theta a cube/3 factorial sin cube theta.

And we have seen that this can be written in terms of cosine and sine with sin 2 omega t or

cosine 2 omega t and if I rearrange it, I would get constant the first term in the Fourier series

as 1+a square/4. This next term is sin theta, the coefficient is going to be a+a cube/8 because

sin omega t or sin theta raised to the power 3 will come sin 3 theta and sin theta with the

corresponding coefficient.

Then, sin theta is raised to the power 2 will give me cos 2 theta, so I have coefficient of -a

square/4 and of course the 3 theta comes from the sin cube, it is a cube/24. This is basically

approximation for the Fourier series coefficient. We also know the exact Fourier series for

this, e power a sin theta it can be written in terms of modified Bessel functions and we have

seen that all the odd theta values will come in terms of sine and all the even thetas will come

in terms of cosine.

So we can take this series, we can stop at sin 3 theta that is it will have a constant, sin theta,

sin 2 theta and 3 theta. So I am going to truncate it at that, so in this case I0 is the one

corresponding to the constant.  If I substitute m=1, I would get sin theta,  I am sorry. If I



substitute m=0, I will get sin theta, m=1 will give a sin 3 theta. In the second part of this, if

we substitute m=1, we will get cosine of 2 theta, m=2 will give me 4 theta.

Since we are going to truncate after 3 terms we will just stop at I3, so I have I0, I1, I2 and I3

and then of course you have negative value for I2, negative value for I3, positive value for I1.

(Refer Slide Time: 43:25)

This is Taylor series expansion truncated and rearranged. This is Fourier series expansion

truncated after sin 3 theta and of course for the each modified Bessel function, we know how

this can be expanded in the power law power series. So for example, if I want to calculate I0

of a, it can be written as a/2 raised to power 0 and then summation with 0 to 4 and so on. This

is approximately equal to 1+a square/4 when we stop at a cube.

So this is going to give us constant, this is going to give us power 2, this going to give us

power 4, we are going to neglect anything more than power 3. Therefore, we are going to

write it as 1+a square/4. I1, this is a/2*a constant a squared term a power 4 term. We are

going to neglect this. So we are going to take only this term and this term and we will write

approximately this is a/2 and a cube/16.

Now you have to remember I0 term is corresponding to 1+a square/4 this comes correctly. I1

term has to be multiplied by 2 and then if you see compare this Taylor series and the Fourier

series, you will see that they are matching when this is truncated after a cube term and I2

term, correspondingly if you do this you would see that it is matching correctly and I3 also

when you truncate it, it will match correctly with the Taylor series expansion.


