Electrochemical Impedance Spectroscopy
Prof. S. Ramanathan
Department of Chemical Engineering
Indian Institute of Technology- Madras

Lecture — 35
Bounded Warburg
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Previous class Today
* Assignments * Mass Transfer Effects
* Mass Transfer Effects * Impedance (continued)
* Impedance * Constant Phase Element

+ Double layer - Generalized capacitor

+ Experimental observations.

+ Heterogeneity. Macroscopic? Microscopic?
+ Effective capacitance from CPE parameters
+ Correlation between CPE parameters,

The equation for impedance we have seen it for impedance under what is called semi-infinite

boundary conditions.
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1. These are valid only at equilibrium.
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3. Clean separated expressions only in special cases. Y



Just to refresh your memory, we had taken the Fick’s second law equation with the appropriate
boundary conditions. We had derived the equation for steady state current values at different
rotational speed, and as a function of dc potential. We have also derived the equation for
impedance assuming that the boundary condition is at 6=oo, that is semi-infinite boundary
condition. We saw that you can write it in the faraday impedance in three different terms; one
corresponds to charge transfer resistance, another corresponds to Warburg impedance for species
A and another for species B under certain conditions that when we say de¢ potential is 0. You can
simplify this and split it into these three component such that the charge transfer resistance does

not have any diffusion term and the diffusion term does not have any kinetic term.

And of course if you have a semi-infinite boundary condition, only E4=0 is the steady state
condition you would not get steady state condition for any non-zero value of Eg4.
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We have seen that the complex plane plot would look like the one that shown here that is a 45°
line with an offset of course to the origin and you have the bode plot represented here for certain
values of kinetic parameters and the diffusivities.
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What we want to do is to derive the equations for a finite boundary condition that means the
boundary layer thicknesses is finite. So, the basic equation is going to be the same. The general
solution is also going to be the same. We are going to apply a different boundary condition.
Previously we would have said, at extending to oo this is the result. Whereas, here we are going

to say x= 9. It is going to be like this.

So, the general solution is going to be A B ati again to refresh your memory, see ac
was written as Ca, Was written as Caaeo € power j ® t+ 4 and then we wrote it as A € power
] o t. That is to say A 18 defined like this. And similarly we have B. And our original

equations were unlike those dC,/dt then we said C4 can be split as CagetCaac.

And therefore these equation we wrote in terms of Ca,.. And then we said C, ac can be returned
to this form that is our assumption and with that assumption this pde became ode. That means,
we have a form for this, therefore, we are supposed to find how Cyu,e depends on x. Then this
became equation in A and that is how we got the solutions. Now we want to say at x = 0 the
boundary condition is the same that is the flux of this A species tells us how much current is
coming through, how much faraday current is there. And that is also related to the flux of the
species B. Just as sign is opposite because A comes in it gets converted to B. Therefore, B goes
out at the anodic potential. Second boundary condition is instead of saying x = oo we say x= 9
concentration is Ca bulk and Cg bulk. Which means if this is the electrode, this is the boundary

layer. Beyond this concentration remains the same. Here, when I apply only dc potential it is



possible this is Cp and this is Ca, a straight line, linear line and if I apply a sinusoidal potential on
top of this concentration here will fluctuate with time. Concentration here will also fluctuate with
time concentration here will fluctuate here also will fluctuate. And you can imagine that
amplitude of fluctuation will go down as you go further towards the boundary. At the boundary,
we say it is not changing. Cy, is C, bulk, Cpis Cg bulk, which means A is going to be 0, B
is going to be 0. That is because the ac component magnitude is 0. Only the dc component
remains there. We are going to solve it for C, and then I am going to say if you solve for Cg you

are going to get similar thing except the negative sign.

So, we want to calculate A1 A2 using these two boundary conditions. Can you try this? Earlier
case when x = « we could say Al has to be 0 because otherwise it goes to c. Here you have to
solve these equations by solving them simultaneously. So, we take this equation we take this
boundary condition, and the second boundary condition which is written as 5 =0 when x =9
and then use this to find value of Al and A2. When x = §, concentration is constant. It is Cx
bulk. That means fluctuations are 0 since the amplitude of the concentration oscillation is 0. It
will take you a few minutes but it is not that difficult. First part you can show that A2 is related
to Al with the factor of e power 2 square root of j ®/D4 6. We can rearrange the first equation
and write A2 instead of Al. Second is little more complex but we have seen the procedure at
x=0, this is what we know. This means when [ write in terms of A, 1 can write in terms of
actdc. I would get Ca,e 0/0 X diffusivity= ig,c and that iS)the same as Aip. That is one way of
writing. And other way of writing it is, iacO e power j ® t+ 1. Another way of writing ace
power j o t. A € power j o t. That means I should write 6 Ca/
0X 0 A /0x at x=0 is same as ir /diffusivity of A and F faraday constant, F and the

numerator.

So, instead of writing like this I can of course bring this D4 below the denominator here instead
of writing 6Ca/ 0x at x=0 = ip/Da F, I can write 8 4 /0x at £ /F Da. And of course I can
take the derivative of C, with respect to x and then at x = 0 I can find the value. Now using this

equation and this equation I can write A1 and A2 in terms of known parameters.



I would actually like you to try that and get this. A lot of times in the books, you would see that
this is the equation. But how do you get it? And when you derive, you would also see under what
conditions they are valid. So for example, you should not take the equation for semi-infinite
boundary condition and apply it when Eg4 is not 0. If you are going to use a dc offset, dc bias,
you should always take at least if you are going to compare with analytical solution, take the
finite boundary layer condition. In case the boundary layer thickness is large, estimated to be
large, used that large value. And when boundary layer thickness is large, that finite boundary
layer thickness equation should approach this semi-infinite boundary thickness equation. That is.
But, you should be aware of what are the limitations of the formula that we derived.
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So, if you get the value of Al and A2 do you get an equation like this? So concentration
fluctuation, the magnitude and phase depend on the location x. We really want to know the
concentration fluctuation at x=0. But here you can see if x = 6 you get 0 fluctuation so that
equation at least appears to be. I mean x=06 that you will get e power 0- e power 0 therefore the

numerator goes to 0 fluctuation goes to 0.

At x=0, fluctuations are maximum. This is basically substituting for Al and A2. So I have
skipped one or two minor re arrangements here. Maybe 1 should not. What is the value of A1?

r / (you got this before). And A2 is going to be -Al. We got this from the first boundary
condition. And therefore it is going to be —ir. If I multiply by e power 2 square root of j @/Da, |



am going to get correct? So it is going to look like this. A1l I can write like this or I can write in
the numerator as... now Al X e power square root of j ®/Da X is going to be e power j ®/Da
square root x-8. So, this first part comes from the Al component. This -sign comes here,
denominator remains the same. A2 is going to be ¢ power j ®/Dx 6 —x. Instead of writing it as 6 —
x, | write it as — of (x-9), so that it can be written in a little more compact form. This numerator is
actually two times hyperbolic sine written as sin h, and the denominator is two times hyperbolic
cosine. So, the factor of two cancel out. So, r sin h, the numerator has o6-x
denominators cos sin h with the ¢ factor and then of course 1/j ® D4 for the concentration of A.

So, it needs careful algebraic rearrangements but that is enough.

Similarly g it is going to be same that except instead of the diffusivity of A you would have
the diffusivity of B involved in it; instead of +sign you will have — sign there. Because the
boundary conditions, the second boundary condition is the same at & x=5, you will have Cg
fluctuations at 0. First boundary condition it would say i¢/F is — of Dg 8C/0x. So, because of that
the factors will have interchanged in the sign. So, it will look similar to A but with the
negative sign or the negative sign is gone here and instead of D, you will have diffusivity Dy
there. “Professor - student conversation starts” But sir x=0 we got both C, and CB=0, but at
some boundary they must be some one component. We do not get C, and Cg to be 0. We get

fluctuation in Cp, A pto be 0. Cx is actually Cx bulk. Cgis Cp bulk.

(Sir can you go to the previous slide sure yes) here we are solving that 6  A/0x right, at x=0?
Yes. So if you substitute Al, A2 as in the form of Al, r / DA*F right to solve Al
from that equation, that square equation, 8 A /0x, at x=0, from that equation if we substitute
A2 in terms of Al and solve for Al right? In that case = F/Da*F right?  F/D,*F divided by
some j, root j ®*1+something. Now, look at this. I am still keeping it. This is there. Now if |
want to find the value of A2 or Al, what do I do? I take this equation and substitute it here. What
do I get?
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I am going to write square root of j @/Da Al — I will write it little more neatly this is correct
because instead of -A2 I would write it as Al e power 2 square root of j ®/Dp 6? T F
/DAF. Now I can pull Al out of this, so it I going to loo F
/DAF. T divide by j ®/Da. I have missed the DA. Have I? And then instead of writing it as
I+epower that is one way of writing it. Another way is to pull out I can multiply and divide by
(0) (17:53) o and then I will get yes I have missed the F factor is there. I have missed the Da.
That is one way or I can write it as I can bring it in and then cancel. Right now it is easier to
write like this and that means is it correct? Can we say that Co+Cp will be Ct always? [can we
consider a function like overall function will not change, so, instead of no no no no not overall
function overall concentration at a given location]. Not exactly, not always. If Da=Dg, you can
do that. But according to this equation for 1 mole we are getting 1 mole of B this is... 1 mole of
A will get 1 mole of B. If we take the entire volume on the boundary layer you can say that but
not at one location because the concentration of A can build up or B can build up because B may

not diffuse that fast].

Concentration of A may decrease up to some level so when the diffusivity of A and B are equal,
A will get consumed concentration will go down it would not go to 0 because it is coming at a
particular rate. Let us take a steady state condition, concentration of B will also build up but if B
diffusivity is slow it will build up more. Net 1 mole of A will give you 1 mole of B there is no

doubt about that. But the concentration of A + B need not be a constant regardless of any



irrespective of the location and space you cannot always say that. But for a binary system, we
say that Dag=Dga that is what we have proved in mass transfer, if we have a binary system the
diffusion of diffusivity of A in B (()) you are talking about two gases so it is just diffusivity of A

in this mixture, diffusivity of B in this mixture.

And if we takes for example ferro-ferri example they would not be the same in fact it is more or
less diffusivity of A in water and B in water although it is a mixture. Then it will be different it is
different but if we have two mixtures we have a binary mixture here we have A and B and we do
not have any other substance. In that case even here sometime people will approximate and say
Dy is roughly = Dg and simplify it makes it a little easier to look at this equation because it will
have fewer terms. But for binary system we have proved the Ja=-Jg. If 1 is dCA/dx is decreasing
in that case if even if we considered that D, is not =Dg. So one is increasing the other component
of that is decreasing. That is why we write the boundary condition as when it is positive here it is
negative there. Then the flux we do consider it as the amount of either that is coming in is going
to= the amount of B that is going out. J of A an J of B with the opposite sign and they are equal,
but unless D and Dg are equal you cannot say that C, and Cg the sum of them is going to be the
same. But if it will not happen, then at one point the overall composition will keep changing. It
would not keep changing you get to be a higher value, but under steady state condition that

higher concentration gradient with lower diffusivity is allowing it to go at the steady rate.

Amount of A that is coming in should be equal to amount of B that is going out. So, if diffusivity
of A is a much much larger than the diffusivity of B, that means to B diffuses slowly. Now, a
small concentration gradient will allow A to come at a particular rate. Same rate if B has to go it

needs a larger concentration gradient.

So, concentration of B will be higher. A would have gone down. For example, initially A is at 5
mM B is also at 5 mM. A would have gone down to 4 mM because of reaction, it is consumed. B
will not be at 6 mM it may need to be at 7 mM to go at the same rate. So, under steady state
condition, it will build up to a different value but it would not keep increasing. Because the
diffusivity is for example in this case we assumed it is less or smaller. So, when you apply a

sinusoidal also, A will come at a particular rate or fluctuate at a particular rate, B will fluctuate at



a different rate and it will fluctuate around the different mean value. But it would still be
sinusoidal with a different amplitude. You cannot assume that the amplitude of A and B will be
the same. Based on the diffusivity values, the amplitude values will change. Phase value will also
change. But if the diffusivity happened to be equal then they can say they are fluctuations will be
mirroring each other exactly. Here the sign is changing so when C increases A will decrease that
is expected, amplitude will be comparable because typically D and Dg are in similar range. But
you cannot assume that they are going to be equal “Professor - student conversation ends”.
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Now, we go back to the original equation where we write current fluctuation as a function of
change in potential, change in concentration of A and concentration of B, and this we have
written it as g e power j o t, A€ power j ® t, for AC,. Now we have written it in
ter r. So what would happen is 81/0Ca and 61/6Cg we have the values. And this is based
on the equation i = faraday current is = the net rate of production of electrons. So, from this we
saw that ir can be written as ipgc + irac and iF,c can be written as 61/0E when you take the 6i/0E
you get Fbikjge Ca at x=0, b,k.4. Because when we take the partial derivative action
concentration of A and B are fixed. Here we assume concentration of B and the potential are
fixed. Potential is fixed and concentration of A is fixed. You get three terms. We got expression
for this is of course E,., we got expression for this got this. Now we derive the expression for

ACp. So AC, is basically going to be 4= e power j ® t and AC, at x = 0 we substitute x=0



there and you would get sin h/cos h which is going to give you hyperbolic tangent and I am also

adding the diffusivity Da.

Previously it was (8- x) but since we substitute for x as 0, we would get this simplified
expression. And if it is AC, we should write e power j ® t Al will leave it e power j
o t out. Now if you substitute to the entire thing. We can write for the first expression ac it
comes in terms of E,, rand e power jot,  and e powerj ot
which is basically Air. So, we can rearrange and get an expression for ip,o/Eae. S0, you can see
that this is going to give you 1+ whatever is here + whatever it is here you got a negative sign
because it is going to be -F k_j4. for the partial derivative with respect to Cg. Here you have got
the negative sign because A is with a negative sign. So when you bring them to the left side,
this will also become positive this will also become positive. So, you would get ¢ or ip, 1+tan
h something+tan h something and that is going to be = a factor multiplied by E,.. So, you can
rearrange and get i,/ Eac Or Eqo/ipac.
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So, fairly large expression but I think D4 and Dg has to be there. You can invert it and write this

in three terms again as Rt Z ® Zwa Zwg. Sometimes it is written as BW to say bounded Warburg
impedance. Sometimes it is called a transmittive boundary condition to say that there is a film,
diffusion occurs there and at the end of this, A can come in or go out B can come in or go it

transmits.



Sometimes they would derive the expression for the impedance in the film where at the end of
the film nothing moves in or out. That would be called as blocked boundary condition. There you
would say the derivative of this concentration is going to be 0, because the flux is going to be 0
that means that dC,/dx and dCp/dx acts at the boundary is going to be 0. So, you may have a
film it will may diffuse in and out but in and out. Diffuse in the sense it may be produced or
consumed in this boundary and it can diffuse in and out but at the other boundary it is not taken.
So, it will have a slightly different expression of course and the way it looks a bit different. But
the equations to going to be same except when you finally get the value of Al and A2 you need

to use a slightly different boundary condition.

So, compared to that this will be called as transmittive boundary condition, open finite link
diffusion, no, different groups would use different acronyms for this. But we normally say it is
bounded Warburg or finite Warburg impedance.
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So, if I invert it i would get it as 3 terms. Thing is, when 0 tends to c«© when I put large value of 6
what happens to tan h? x tends to o this goes out it is going to go towards 1. X tends to oo or here
it is o tending to oo. Even when 6 is not oo, o is relatively large it is going to look like tan h is
going to be 1. So, what you would expect to see is, it should look like the Warburg impedance.

maybe this is not nice but look like a 45° line with offset at this frequency range later it is



actually going to come down and settle. At limit 6 tends to o« it is going to look like what you

have seen before. Of course here too, right? So far we have not assumed that the DC potential is

0 in this example. When 9 is finite value when ® becomes 0 what do we see.
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You are going to get tan h square root of j ® Dg, D4 it does not matter. So it is going to look like

Hospital's Rule and get up expression for this it will settle at a finite

0/0 and you can apply L
value. Sin h of x is going to be x this is going to be 1+x* etc. So, if you do this you would get 1

here for tan x tan hx/x but then you have other factors so when you take this you would find it

will come to finite value.
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Which means, this will settle on the real access. It is not going to be a complex number. It is
going to be a real number and it is not 0. So, it is going to be R; + some value so this is the Ry
value at high frequency it is going to look like the 45° line because it is similar to at low
frequencies it is going to settle here and that settling function is given by tan h of this terms

within bracket divide by this term within bracket.

Sir the first loop corresponds to Cdl right Cdl and Ry this is our solution which is we are taking it
as 0, this is going to be Ry and this would not look like a loop it will look like a 45° line, I mean it
would not look like a semi-circle it look like a 45° line to some level and then a 45° line and then
with an offset of course and it may not even come nicely all the way here and go. It may come
like this and go here but it is going to be different from a capacitive loop which you have seen
for one absorbed intermediate. But in order to clearly see that, we should always plot it in the
equal scale. Plot it in non-equals scale it can stretch and it is not easy for us to see
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So, taken certain values I just use the formula and predict that impedance for variety of

frequencies and plot it for different boundary layer thicknesses. If we look here it looks like a
semicircle not completely touching the real access of course and then it looks like a 45° line to
some level and then it settles at a real axis when you go to high frequencies you will not see any

difference when the boundary layer thickness is varying.



When you go to low frequency you would see a difference. So here in the inside all the points are
overlapping only at the latest stages they are separating out. You can see this is not a semi-circle
right. It is a sort of distorted semicircle. It looks like a nice semicircle or on the right side arc is
neat on the left side but medium frequencies the arc is definitely not a part of a circle. Now when
the boundary layer thickness is large why do the impedance values go higher or larger at low
enough frequency? At high frequency why does it look similar for all this boundary layer
thickness values? Basically at high frequencies, fluctuation in concentration is not that high. At
high frequencies, you have potential varying because of it the concentration of the surface
concentration of A and B will change but it cannot keep up that easily the diffusion cannot keep

up that easily.

If you give very high change very high frequency very fast change the rapid change in the
potential rate constant will still keep up with that at least that is our assumption k will keep
fluctuating as quickly as the potential fluctuates. But the concentration of A and B will not
fluctuate that much. So the magnitude of the concentration change Ca, is at this level Cg is at this

level if I apply a dc potential if i apply very fast ac it is going to look like this.

If I apply a slow frequency potential changes to the same maximum extent but it increases slowly
and decreases slowly that means this can also change concentration fluctuation can change
means it will go like this of course B increases A will decrease. But it can keep up so when I go
to low enough frequency as the potential changes you can almost look at the DC curve and then
say from here I very slowly increase the potential to this and slowly decrease the potential to this.
I can say this is how the current will also increase and decrease. In fact in potentiodynamic
polarization we go to a potential measure the current, we go to another potential and measure the
current and practically we end up doing it at a scan rate, slow scan rate. Which means we are
thinking it is more or less at steady state. So, from this potential dynamic polarization curve you

can estimate how the low frequency impedance will come.

This tells if I start at dc potential and give a sinusoidal potential fluctuating at a very slow rate,
low frequency, current will also going to go like this. I am not giving a large sinusoidal potential.

I am giving a small 5 mV 10 mV amplitude. So, I can estimate the polarization resistance from



the potentiodynmaic polarization curve. I can look at the slope of that curve and I will get the
value experimentally when you compare the polarization resistance from the impedance data and
from the potentiodynamic polarization curve you should get within the experimental error you
should get the same value. Of course here it is going to be the inverse of this because what you
get is di/dE and polarization resistance is dE/di. So, get the slope take the inverse of it and then
compare with the here it is going to be ohm centimetre square. Here of course this means it is
going to be amp per centimetre square do not take the raw data of amp. Other than that
precaution you should get more or less same value polarization resistance is just the impedance
right? Or we are talking about something else polarization resistance is the if you look at the
impedance data is that the impedance is at the low frequency limit which is basically we expect it
to be 0 frequency limit but whatever low frequency you can get if you get somewhere here you
should extrapolate and get it. It should be a real value and phase should be 0. So here if I give
more and more frequencies that means lower and lower frequencies it is not going to go like this
it is just going to settle here. Points are packed more and more closely here and of course

because I have the equation, I can substitute there ®=0 and find the value.

But in general if you are measuring experimentally and then you are finding it settling there you
will take that as a polarization resistance. That is one way of experimentally measuring it.
Another way is to measure this around this value, go at, actually you do not have to even go you
go here settle there measure the dc current, then go to another point wait for sufficient time
measure the dc current, go to another point wait for sufficient time measure the DC current that
is one way of doing it or go at a very slow rate and measure the dc current, find the slope of that
fit it to a straight line if it is a curved line treat it to a quadratic equation and find the slope of it.
That inverse of the slope would give you a polarization resistance. Basically it tells if I want to
change the potential by little bit what is the resistance offered by the system? If the current is
large you can change the potential a little bit, the change in current is large, then you have a low
polarization resistance. If it does not change that much you have a large current does not change
that much you have large polarization resistance. That is to say I have certain charge here in the
interface, I have certain potential and certain charge how easy or difficult is it for me to change
it? Change it if it is a O it is a change of polarity you can also measure it at any dc bias. Current is

very low, resistance is very high. Now if [ have a large & versus small 6 if you have a large o it is



harder for the diffusion. Large o is one assumption I mean one way of looking at it low Dy
diffusivity D, and Dj that is also going to be equivalent. So instead of doing this of course this
is practically easier to say I have one system I will change the rotational speed or change the &.
You can compare different systems with different diffusivity and you will get similar results.
Lower diffusivity will end up giving you a larger polarization resistance. But our here I am just
comparing different d values, different boundary layer thicknesses you will end up getting larger

boundary layer larger polarization resistance.

And of course you can visualize, when 6 becomes o it is going to look like this and settle at oo
which is basically a 45° line. We are not really going to see where it settles but you can visualize
that as you increase the 6 it is going to approach more and more the 45° line for a large number
of frequencies before it comes down and settles.

(Refer Slide Time: 44:27)

ko= ko= 10° %, E, 20V 15, 0CP, G = Coo =5
mM, @=0.5,T=300K, C; = 20 uF cm?

: G wl) 7 UYL
Mass Transfer. Special case of £,=0 M‘/ e
e 2 v

—

Bode plot, 6 =20 1

%5

2 em®

0
Frequency | Hz

And if I really look at the bode plot, there is a small maximum here it is not easy to see in this
scale. And then imaginary part, imaginary part goes through them maximum here and then
another maximum correct real part of course goes settles goes and settles again that means it
increases settles increases settles again. Magnitude and phase of course here you do not see it is a
starting at 90 degree because it starts like a vertical line. Practical cases when you have a solution

resistance it actually starts at 0, it will go up in the phase come down go up and come down. But



it is not a clean symmetric peak because it is not really a semi-circle. But this is a signature that
you would see in boundary plot.

(Refer Slide Time: 45:19)
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I think I will continue it tomorrow with the one more part of it that is the effect of dc potential
and then we will move on to a phenomena called CPE constant phase element we will stop here

today.

So, we will just continue with where we left yesterday which is to wrap up the part on mass
transfer effects on the impedance and then we will start with what is known as constant phase
element. If time permits, we will also go to the porous electrodes.

(Refer Slide Time: 45:19)



Mass Transfer, Effect of changing By
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So, we were looking at the electron transfer reaction A — B and we got a complex expression
for impedance. We can simplify this to a more familiar expression if you assume that DC
potential is O that is at OCP. Right now the way I have written is valid for any DC potential with
or without DC bias that is valid and if we say that the DC potential is at 0. At many times people
use this for corrosion experiment or other experiments at OCP in which case you could get a
simpler expression where charge transfer resistance will come only in terms of kinetic
parameters. The Warburg impedance or bounded Warburg impedance will come only in terms of
the diffusion parameters. but that is not in general going to be true or correct. We have seen an

example where different 6 values affect the impedance especially at the lower frequency.

What [ want to show you is if you use this expression and calculate for a given & value, for a
given mass transfer limitation for a given & value boundary layer thickness if you change the dc
potential here the red colour, red colour rounds circles are the dc potential at 0. The green
squares correspond to the impedance when dc potential is 50 mV, and the triangles correspond to

the case where DC potential is 100 mV.

So, notice the following when dc potential is 0 the first loop which is shown in the insert here
comes dips down and then it starts increase and then comes and touches the real axis. This
corresponds to charge transfer resistance, and this value corresponds to polarization resistance

this value meaning we are assuming of course solution resistance is 0. Earlier, for a reaction like



this if you assume that mass transfer is not a limiting factor if you assume that it is very rapid
mass transfer at dc potential of 0 you might get a spectrum like this in the complex plane. When
you increase the dc potential, it is going to go down. 100 mV, 150 mV, the charge transfer
resistance and polarization resistance both were the same in that case. Because you would
represent that by just one resistance which case polarization resistance charge transfer resistance
they are the same. And both of them decrease with respect to potential. We also saw other
examples where is A — B, B — C we would have used a slightly different notation, we might
have said M — M4 + €7, M a4s — M + €. In those cases generally charge transfer resistance

tended to decrease with increasing potential.

However, when you have mass transfer limitation, when you increase the potential, the charge
transfer resistance actually increases. So, if you look here the red circle will tend to touch the real
axis earlier, green will probably touch somewhere here, black if it were extrapolated and
touching it it is going to touch here. This of course corresponds to the Zy or Zgw, BWAand BWg
for both A and B species bounded Warburg impedance right.

(Refer Slide Time: 49:46)
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Now why does it behave that way? When you increase the potential you expect the reaction to

happen at a faster rate. At least one of the reactions should happen at a faster rate. Faster rate
means more electron transfer and we would say less resistance. So, if you go back to the

expression, the red colour part in the numerator with the black colour part in their denominator



corresponds to Ry. When I change the potential, when I increased the potential, k4. will increase
k.j4c will decrease concentration of B will increase because I am producing more B when I
increase the potential I am producing more B I am driving the forward reaction more
concentration of A will decrease. Earlier when we assume mass transfer was very rapid we said

Ca s fixed Cp is fixed. Then when I increase the potential k4. will increase k.4 will decrease.

In general, the denominator will increase and therefore we would say the charge transfer
resistance will decrease. Now, although the effect on k; and k_; effect on change in potential k;
and k., they are the same but concentration of A will decrease and concentration of B will
increase and that has the effect that net effect is that are t is larger that means denominator is the

smaller number.

So, whatever learning we had that pattern recognition, that if I increase the potential it decreases,
that is valid only when the mass transfer is very rapid. When mass transfer plays a role you
cannot extrapolate whatever you have learnt there and use that here.
(Refer Slide Time: 49:46)
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Same with polarization resistance. We get the larger polarization resistance when the dc bias is
changed. When it is 0 dc bias you get minimum resistance for R; and R,,. If I go to -50 mV or -
100 mV it is going to be similar to this which means if this is 0 resistance, 50 mV may come

here, of course diffusivities are the same — 50 mV will also give me the same thing. I cannot



differentiate between these two if they are slightly off then these numbers will be slightly off. So,
when they go to a larger potential or a more negative potential both cases the impedance will
increase impedance at mid and low frequencies to increase high frequency of course it is
determined by the capacitance value as long as the capacitance value is assumed to be the same
you will get similar results. But + 50 mV, + 100 mV will go like this — 50 mV will also go in the
same way. 50 will show up -100 will also come in the same way. A spectrum for + 100 reversal
show up. And when I represent that in a bode plot imaginary part of course there is a slight
increase and decrease and then a significant increase and decrease. Real part is going to be flat at
low frequency meaning it is not changing that much here. It decreases there is some sort of flat
area here and then it decreases again. You may not see it very clearly here. But that is
asymptotically going towards it. This again it is starting at 90 degree that means it is going
vertically up. So, it is the phase is at 90 although when you have a resistance when you have a
solution resistance, it will start close to 0 and then it will go to 90 come down, this again shows

the second peak corresponding to the mass transfer resistance here.



