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We will continue where we left on the derivation of impedance. 

(Refer Slide Time: 00:20) 

 



To refresh your memory; Earlier, we have seen that you have to write the ficks equation, and you 

have to write the current equation, and under steady state conditions you can solve them and get 

the concentration profile. Concentration on the surface as a function of potential and at a given 

potential, you can also find the concentration profile. It is going to be linear and you can also 

find how the current varies as the rotational speed of electrode changes. As the rotational speed 

changes, you have different boundary layer thickness and you have different current profiles 

here. 
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Then we started deriving the equation for impedance, so we want to get an expression of iFac in 

terms of Eac and other values. Instead of expanding in terms of Eac on the right side, we expand it 

in the terms of ΔE, ΔCA and ΔCB and in order to get the ΔCA and ΔCB, we were solving the ficks 

equation. If you write this ficks equation for ΔCA, we can write it in terms of amplitude or 

magnitude and phase at a given ωt. 

(Refer Slide Time: 01:34) 

When we do this, we get an ordinary differential equation in terms of the location for CA tilde 

where CA tilde is 
0

Aj

ACC e  . It is a phase and magnitude of the amplitude. If I have to draw it 

outside; 

This is the electrode surface, this is the boundary layer and beyond this, the concentration is 

fixed here and if there is no DC bias concentration throughout, this is going to be straight. 

 



When we apply an AC, concentration on this surface is going to fluctuate with respect to time. If 

there is a DC bias, it may look like this and if I apply a small AC on top of it, it is going to 

fluctuate around this. Out here, it is going to fluctuate, meaning it is going to oscillate and in 

general it will not have a phase in sync with the AC potential. It will have a phase off set and it 

depends on the ω value and it depends on where that is. We are interested in finding the 

concentration here and the fluctuations in the concentration on the surface because we want to 

know how the current is going to be affected. Reason is, we can measure only the current. We 

will not be able to measure the concentration fluctuation at any location, so we want to estimate 

how this is going to be.  

(Refer Slide Time: 03:30) 

 

What we get is an equation ODE and it is a simple ordinary differential equation, second order 

ordinary differential equation. We can write auxiliary equation so we know how to solve this. 

We are going to write, this has 2 roots, + or – m. Since we use C for concentration, we are going 

to use A1 and A2 as the integration constants for the oscillations in species A. For oscillations in 

species B, we are going to write it as B1 and B2 and we are going to write it as e
mx

, e
–mx

 because 

+ or – m are the roots of this equation. Now we want to get the integration constants A1 A2 and 

likewise we will solve it for the B1 B2. Actually we would not solve it. I will just tell you this is 

the solution. If you know how to solve it for species A, you can solve it for species B also.  

 



We have ficks equation we have boundary conditions. We are looking only at the surface, we 

want to get the concentration on the surface. In general this equation is valid throughout this 

boundary layer. Now we will get it for 2 cases. 1 is a finite boundary layer thickness and the 

other is infinite. It is called semi infinite because it goes from 0 to infinity where the solution is 

not at all steered and that dimension is large enough for us to consolidate to be semi infinite.  

 

We have 2 boundary conditions at x =δ in case of finite boundary condition and when x tends to 

infinity is a semi-infinite case. In those cases, we say, at that location concentration of A is going 

to be fixed value. It is going to be CA bulk and concentration of B is also going to be CB bulk. It 

is not changing. On the surface, we can relate the faradaic current to the flux of species A and B. 

 

In this case, we are going to say anodic current is positive. This is reaction A going to B with an 

electron. When you apply positive or anodic potential, more A will get converted to B and we 

are going to say that current is a positive current. Imagine this is location 0, this is location δ or 

infinity wherever that is and this is electrode here. If A is getting consumed, originally let us say 

this is the concentration of A throughout the solution. If I give positive potential, A is going to be 

consumed which means concentration of A here is going to be less than the concentration in bulk 

and concentration of B is going to be more than the concentration in bulk. If I apply an anodic 

potential this is how it is going to look like and when this is the case what happens to ∂CA/∂x. 

That is a positive value because it has a positive slope. Increasing x gives us increasing 

concentration of A. 

 

dCA/dx is positive, diffusivity is a positive number and that is going to be equal to iF/F. In 

general, it is going to be iF/NF where n is the number of electrons. In this particular example, we 

are keeping n=1. If you know how much current is coming, we can also say what is the flux of 

species A because 1 mol of A will give us 1 mol of electron and 1 mol of electron when you use 

the factor F here faraday constant, t it tells us how much current is coming. 

 

We are able to relate the current to the flux of A and we can also relate to the flux of B because 1 

mol of A gives us 1 mol of B here and concentration of B is decreasing here. That means dCB/ dx 

is negative because we chose the convention that anodic current is positive. When we solve for 



species A, we are going to use this condition at x= 0 when we solve for species B we are going to 

use this. Now you have an expression for CA tilde. This is in terms of CA and this is also in terms 

of CA. 
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No problem, we want to convert this boundary conditions in terms of CA tilde. At x tends to 

infinity we are going to first look at semi infinite boundary conditions and solve for that. Later 

we will look at finite boundary condition and solve for that. At x = infinity CA is CA-bulk and CB 

is CB-bulk. That means there is no fluctuation there in CA-ac. This is one way of expressing it, this is 

another way of expressing CA-ac, and this is another way of expressing CA-ac. Fluctuation is 0. We 

can write in terms of sine, we can write in terms of e
j(ωt+ΦA)

. We also know we have grouped this 

and e
j(ωt+ΦA)

 as CA tilde. In the bulk, there is no fluctuation. That means CAac is 0 and CA tilde is 

0. The expression here if x = infinity, what happens? This goes to 0, this goes to infinity and yet 

if I want to say CA tilde is 0, which means A1 has to be 0.  

 

We want to find A1 and A2 and we have 2 boundary conditions. One of them is at x = infinity 

another is at x =0. We get the constant A1 as 0. Only then we can satisfy the boundary condition 

that as x tends to infinity, concentration is a fixed value. Second, we want to write ∂CA/∂x = iF/F 

divided by diffusivity DA. We want to use the second boundary condition. Under steady state 

condition CA-dc or CA steady state (refer video).  



Under fixed DC potential, we know this is valid, so CA in general, we can write it as CA steady 

state + CA-ac or CA-dc +CA-ac and we can write iF as iF-dc+ iF-ac. Whatever we have written here, we 

can write it for AC component only and when we write for AC component we are going to write 

(…refer video) 
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iFac, another notation is ΔiF and in general, it is going to be iF-ac0 e
j(ωt+Φi)

 where Φi indicates the 

phase difference between the current and the potential, and that is going to depend on what the ω 

is. Like we have done it for CA, we can also say that iF-ac can be written as… where iF tilde… [it 

just makes it a little easier for us to do the calculation]. 

 

We can get rid of the time factor from this. In ΔiF/ F, we will write it as iFac /F and that is going 

to be iF tilde e
jωt/F

, e
jωt

 goes away. It gets canceled from this equation. Then jΦA only remains. jωt 

comes out. I have taken this equation and write it as iF-ac0e
jωt 

multiplied by e
jΦi

 leaving out the e
jωt

, 

the remaining terms are collected and kept as iF tilde because on the left hand side of this 

boundary condition you have e
jωt

. I do not need to do that. This is just one way of expressing it. I 

can write it as iFac0e
jωt

 e
jΦi

 and leave it as it is and just cancel the things. Then every time I have 

to write a lengthy expression. I had to write iFac0 e
jωt+ΦA

. Instead I just write a little shorthand for 

that. 

 



You have an expression for CA tilde take the derivative of this. Here we have the expression for 

CA tilde and take the derivative with respect to x. We already know A1 is 0. Therefore we do not 

have to keep this. [If you take the derivative here what do we get?] We would get A2 multiplied 

by – square root of jω/ DA multiplied by e power whatever that is there. If you take the derivative 

of e
mx

 with respect to x, you will get m multiply by e
mx

. I want to take the derivative and 

substitute there.  
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We would say
2 ( ) A

jw
x

DA

A

dC jw
A e

dx D



  . Now I want to evaluate this at x = 0, then the e
mx

 or e
– mx

 

becomes unity. I would write 2 ( )
A

jw
A

D
  is going to be given iF/DAF. I just moved the DA to the 

right hand side of the boundary condition. Essentially we want to find the value of A2 and 

substitute it there. It will be nice if A2 comes in terms of Eac or iac. 

 

Likewise, we have to calculate B1 B2. I can tell you B1 is going to be 0 and B2 is going to look 

like this except because the boundary condition says negative. In terms of the boundary 

condition at x = 0, we have DA∂CA/∂x at x =0 = iF/F and that is equal to - DB. You would get the 

constant B2 just like A2 with a negative sign. [so you are able to get up to this].  

(Refer Slide Time: 16:23) 



 

We will rearrange it and we write A2 as - iF tilde / faraday constant. We have one factor of DA 

and another factor within square root and after rearranging, you would get jωDA. It is just an 

algebraic arrangement of that. Therefore we would write CA as substituting for A2. We would 

write CA tilde in general it is going to look like this and CA tilde at x =0 is going to look like the 

first factor because the second factor is going to become unity.  

 

Once we know, CA tilde we can write ΔCA. All that we need is to multiply by e
jωt

 and now that iF 

tilde combined with e
jωt

, you would get it as ΔiF or iF-ac. 

(Refer Slide Time: 17:24) 

 



This is how it works. The boundary condition says current is related to the derivative of 

concentration because derivative of concentration gives us the flux. Concentration; it is a 

concentration gradient, derivative of concentration with respect to space. It is not derivative of 

concentration with respect to time. Therefore concentration gradient is going to tell us how much 

material is coming, and how much A is coming tells us how much electrons are being produced. 

How much A is consumed tells us how much electrons are being produced. Now potential is 

sinusoidal with respect to time. Current is also going to be sinusoidal with some phase 

difference. [Let us not worry about it]. Let us just restart it and say when current is going like 

this we will say, when the current starts as 0, we will call that as origin just for now. Current is 

going to be sinusoidal with 0 phase now. If current is sinusoidal with 0 phase, concentration is 

not going to be sinusoidal with 0 phase. Concentration will be sinusoidal, but actually the 

derivative of concentration with respect to x, that only is going to be in phase with current. What 

we end up getting is because of that and this is going to be
jwx

e


, we get the derivative and we 

get the jω term within he square root here. 

 

Concentration will have an offset with current. Concentration gradient will be in sync with 

current and current is going to be in general out of phase with potential. Therefore all these 3 

with respect to potential current and concentration of A, concentration of B, they will in general 

have a phase difference. Even if current and potential are in sync, concentration will have a 

difference. As the concentration gradient is related because it is mass transfer limited or mass 

transfer plays a role, we have a little more complex expression here. ΔCB is going to look like 

same as ΔCA except that it has a negative sign because the boundary condition says iF/ NF or iF/F 

= -DB ∂CB/∂x x at x =0. If you go through the derivation, it will look the same except that the 

sign is different. We would not derive it, we will say that this is the correct expression. 
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ΔE is Eac, ΔCA written in terms of ΔiF, ΔCB is also written in terms of ΔiF and everything else is 

known to us. We will go back to the expression where we write ΔiF ac ∂i/∂E multiply by ΔE 

∂i/∂CA multiply by ΔCA ∂i/∂CB multiply by ΔCB and we already know that ∂i/∂E multiply by ΔE 

is given in terms of Eac and other known factors. 

 

We have done this before, derivative of current with respect to concentration of A and B are also 

known to us. We are going to substitute and rearrange. What we want to get is …. or the inverse 

of this. And on the right hand side everything else should be known to us. What we used to get 

previously was ΔiF on the left side or iFac on the left side, all the things on the right side will be 

grouped together and you will get Eac. 

 

In this mass transfer based derivation, on the right hand side 1 of the expression has Eac and other 

expression is brought in terms of iF-ac or ΔiF and we are going to rearrange it and finally still get 

the expression for Eac/iac. This part, ΔCA is negative iF. For the second part it is – Fk1dc multiply 

by + iF. These 2 actually will have negative sign when you arrange everything and then you bring 

it to the left side, you are going to get ΔiF on the left side and when you bring this term to the left 

side, it is going to like + Fk1dc/F, F will cancel out and that is why I have marked them in blue. 

And on the right hand side we are just left with this. Then take the ratio of ΔiF/Eac you are going 

to get 1 here plus k1dc/ square root of jωDA k-1 dc/ square root of jωDB.  



This is the expression for semi infinite boundary layer thickness and this will simplify when you 

have Edc = 0. That is when there is no bias in the DC potential whatever is at open circuit 

potential we are going to leave it at that. 
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The admittance form is written here. Impedance is going to be the inverse of that. This is written 

separated into 3 components. One is written as Rt. There is no ω in it and ω dependence in it. 

Second is written as Warburg impedance for species A, 3rd is written as Warburg impedance for 

species B. It is not that well separated, but if you look at the numerator yes, one of them is 

dependent on the diffusivity of A and one of them dependent on the diffusivity of B, but the 

denominator you have concentration of A at x = 0 and concentration of B at x = 0 and they will 

depend on the diffusivity of A and B. Leaving that aside, you can separate this into 3 

components. One called as charge transfer resistance; charge transfer resistance is basically 

faradaic impedance at infinite frequency. At infinity frequency, the terms colored in blue and 

green will go away. 

 

Therefore, what is left is charge transfer resistance. Numerator red color, denominator is 

common for all these 3 and often we will write diffusivity of A is roughly equal to diffusivity of 

B. Right now we are not going to do that. We will just keep it as it is. I want you to notice the 

following when you have semi-infinite approximation, you cannot say that you have steady state 

with a DC bias. From the moment you apply a DC bias, Edc is not 0. It will never reach steady 



state because you have to find concentration at x =0 and concentration at x =infinity is bulk. 

Concentration gradient is never going to be non-zero because you are going to write 

concentration gradient as …..(refer video) δ is going to be infinity and this will become… . 

 

As you increase the Edc or as you increase the δ even in finite boundary layer thickness, this is 

going to become lower and lower value. The lowest it can go to is 0. Concentration of A cannot 

go below 0 and concentration of any species cannot go below 0. You will never be able to get us 

non-zero value under steady state condition and if concentration is really 0, you will not have 

any forward reaction. 
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When you say that the boundary layer thicknesses is really infinity, then you cannot have any 

potential that is other than [...] It cannot have any DC potential that is other than 0 and expect a 

steady state concentration profile. You can have unsteady state concentration profile, no 

problem. You can have a sinusoidal fluctuation and expect steady periodic variation that is still 

okay. What you cannot say is I will go to point 1 voltage with respect to OCP and maintain that 

and wait for some time. I will get steady state. You will not get that. In this case, we are going to 

restrict ourselves to finding the impedance only at Edc = 0. Rt depends on the concentration of 

the CA and CB at the surface. It is not completely independent of mass transfer. Concentration in 

general, when we come to finite boundary layer thickness it becomes important and likewise if 



we look here ZW,A and ZW,B depend on k1 and k-1. And they are not exactly independent of 

kinetics.  
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However, if you look at the special case of Edc = 0, concentration of A on the surface is going to 

be same as concentration in the bulk. Concentration of B on the surface is same as concentration 

in the bulk because we are not applying any DC bias. k1dc is going to be k10. k-1dc is going to be k-

1 = 0 because Edc is 0 here.  

 

“Professor – student conversation starts” if we do not apply bias, there will be a reaction 

happening?  

There will be reaction happening, net reaction is 0. Net reaction rate is zero. Both reactions will 

happen at the equal rate. Both may happen at fast rate and both may happen at slow rate, but net 

reaction rate is 0.  

 

If we have an irreversible reaction then… 

You cannot have an irreversible reaction and expect equilibrium.  

 

“Professor – student conversation ends”  

 



This open circuit potential here is the equilibrium potential because there is no other reaction. 

You can have two different reaction. A going to B and C going to D and still one of them may 

give positive current and another may give negative current and you may get net reaction, net 

current to be 0. That is a different case. Here we are considering A going to B and B becoming 

A. We can say that we are going to apply a positive potential or negative potential when you go 

to shift away from the equilibrium here. We can get steady state condition as long as the 

boundary layer thickness is restricted. Finite boundary layer thickness, I have a large reservoir of 

A and B where I am maintaining concentration of A and B. Here I can have steady state and not 

equilibrium. When I apply a DC potential I will continuously consume A and produce B and 

they are going to go away. Once it comes here, beyond that boundary layer it is all completely 

well mixed and there is no change in the bulk concentration because it is a very large reservoir. 

That is a possibility. In fact if you take a normal cell, put say 200-300 ml of solution, put a small 

electrode and control the rotational speed. It will give a finite boundary layer thickness. You can 

have a reaction of A going to B. In fact the counter electrode is typically B going to A. Therefore 

whatever small amount you consume here will be produced on the other side. [Leave that aside]. 

If you are consuming small amount here and producing small amounts of B, but you have a large 

reservoir. In 5 minutes or 10 minutes you are not going to really change the concentration of the 

bulk. 

 

When you look at this, we can write the expression b1 k1dc – b-1 k-1dc multiply by CBx = 0. This B1 

is actually alpha F/RT. This is k1dc. This is CA at x = 0 and this is going to be b-1 k-1dc and CB at x 

= 0 and after rearranging…(refer video) 

k10 and k-10 are not completely independent. They are related. The moment your specify CA bulk, 

CBbulk and k10 and then say I am going to take equilibrium potential as the reference potential, 0 

potential. Then these are related. I can write k10CA-bulk and I can write k-… [it is ok, it does not 

like if I write here]. I can write it as k-10CBbulk. Both are equal actually. I do not need to make 

assumption CA bulk = CB bulk. I will still get that expression.  

(Refer Slide Time: 32:08) 



 

Under this condition, it looks like this part does not have any diffusivity component here. This 

part does not have any kinetic component k or k-1 or k1. This part does not have any kinetic 

component. You would get the feeling that Rt is independent of diffusion, ZW,A and ZW,B are 

independent of kinetics. It is not always going to be clean separation. It is valid only at 

equilibrium. 
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This can be written in a little more elegant form. It is commonly written in textbooks in this form 

where you write a parameter σ as 1/ square root of 2RT/ F
2
. If RT/ x

2
 comes, CA-bulk square root 

of DA, CB-bulk square root of DB and you would combine ZW,A and ZW,B and write it as…. and 

many times diffusivity are not different. People would write DA =DB… becomes a lot simpler. 



 

It will become if CA-bulk and CB-bulk are equal DA and DB are equal, you are going to just write this 

expression as diffusivity (refer video) which is A or B does not matter. We will get simplified 

form. We will end up getting square root of 2/jω as the remaining factor here, square root of 2 is 

introduced here, so that the numerator gets square root of 2 and when you do this, you can write 

it as 1 – j. j is actually written as e
jπ/2

 and you can get the square root or 1/ square root by looking 

at this. Square root of j is going to be e
jπ/4

. It is going to be cos π/4+j sin π/4. Similarly we can 

find 1/ square root of j. It is going to be cos – π/4 +j sin – π/4. You will get 1 – j except that you 

have got square root of 2 as the factor, cos π/4 is going to be 1/ square root of 2. 

 

This expression gives you a feel for how it will look like in a complex plane. σ is a constant for a 

given condition, at a given temperature, at a given diffusivity given concentration. ω is what we 

vary. It is going to look like a 45 degree line. 1 – j with a difference. 1 here is the real part and j 

is the imaginary part. Therefore it is like writing 
y x




. 

 

When I decrease the frequency, this number becomes a larger number. When I increase 

frequency it becomes a smaller factor. However, the ratio is always 1- j and it is always a 45 

degree line. This is going to look like a 45 degree line with decreasing frequencies going towards 

larger value. The total faradaic impedance is given by Rt, charge transit resistance assistance + 

Warburg impedance. And we are able to write in this clean separate form only under special 

condition. It is a simple electron transfer reaction and we are at Edc = 0 and I just want to mention 

there are other methods using Laplace transform. There are probably few other methods where 

you can get the same expression. [You should get the same expression at the end]. But typically 

you will get expressions like this for finite as well as semi-infinite boundary conditions. You get 

expressions like this given in the book. Some books give you also the previous expression which 

is a little more general. However, do not assume that Rt will not vary if you change the DC 

potential. This gives you the feeling that Rt will be dependent only on k10 and CA-bulk and 

temperature, and that is valid only at equilibrium. When you change the potential, Rt will change 

and not only that, it does depend on diffusivity. 

 



In this special case you can rearrange and get certain equations substituted here and then you can 

get this value here. 
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And when you look at the Rt, when you look at the Cdl, solution resistance is 0. I have made up 

some numbers here. k10 k-10 has some numbers. Edc is of course 0. I set CA and CB bulk as 5 

millimolar. Charge transfer coefficient is half. Temperature is at 300 kelvin. Double layer 

capacitance is 20 μF/cm
2
. This is how it will look like and I have denoted Zω as a Warburg 

impedance. I can also represent bounded Warburg impedance when δ = finite value. I can set it 

as BW. This is a 45 degree line only if you do not have anything else. [Here you have solution 

resistance. Solution resistance is not here, it is 0]. Double layer capacitance is there and charge 

transfer resistance is there. From here onwards it looks like a 45 degree line and depending on 

the values, it may look like this. At very low frequencies, it will look like a 45 degree line. Here 

it is not a 45 degree line shifted origin, shifted by Rsolution and Rct or Rt. When you plot it in bode 

plot, you should also have a feel for how it will look like. Magnitude at low frequencies keep 

increasing. You have 1 loop and then the 2nd loop. Phase value starts at 90 here. This is not 45. 

It goes to little less than 45 here because its origin is shifted.  

 

If you go to larger value of impedance or lower frequency, this will tell that it will be 

approaching 45. If this is very low, it will again approach 45 and if you look at Zreal and Zimaginary, 

you get 1 loop in Zimaginary and it goes up, comes down and then it increases, goes up, comes 



down and then it increases as the frequency decreases. Real part moves up and then somewhat 

settles and then moves again. Real part increases, remain somewhat constant and then increases 

again. This is signature for you to look at either in complex plane plot or in the bode plot. 
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“Professor – student conversation starts”  

 

All this is for semi finite delta, right?  

Yes, semi-infinite delta. We have not solved it for finite condition yet [and we will probably 

have to postpone it for next class]. All this is done for simple electron transfer reaction. When 

you have 1 adsorbed intermediate, when you have 2 adsorbed intermediate, none of this formula 

will work and you cannot just take the expression for Faradaic impedance and then add Warburg 

impedance there [although some people sometimes tend to do that].  

 

It is possible to derive the expression. It is very complex. [I will just tell you a brief story and 

then leave you].  

 

“Professor – student conversation ends”   

 



[In 1960, S. K. Rangarajan, who was a former director of CECRI, derived some expressions for 

small amplitude, large amplitude conditions for general, not for 1 reaction. He was actually BSc 

mathematics person. He was not PhD and he was not in electrochemistry and at that time the 

CECRI director contacted him. In the beginning he started his career as a movie critic. Then 

went to academia and he was given a problem thinking it will probably take a year and he solved 

it in a day. 

 

It is like a Ramanujam who solved very high level mathematics with very simple elegant 

expressions. To actually derive that and solve, you will have to spend a lot of time. Normal 

people will have to spend a lot of time to do. After 50 years an example paper came to say it take 

this reaction of E-EAR where we have 1 electron transfer reaction and one adsorption reaction 

which we have seen. We can derive the expression for kinetic limited case without any problem. 

It gives you a negative differential impedance. If you use the metrics form that he has given you 

will get expression like this. Each one of these again, what is this and what is this etc. goes with 

many expressions. What it means is it is possible to derive, but it is extremely complicated and 

lengthy and to tell you I have not derived it yet. I am aware that it is possible].  

 

If you can understand what is done for electron transfer reaction that is good. I am not expecting 

that you will be able to derive for more complex cases but you should be aware that it is not as 

simple as writing the kinetic limited faradaic expression and then putting 1 more term there. 

These are interrelated. Basically the boundary condition where it says this concentration flux is 

equal to the current in 1 of the terms. Species that is coming here may not directly give you 

electron transfer. It may adsorb and after adsorption it may give you electron transfer reaction in 

the next step. The current may not be directly related to this. Current may be related to an 

adsorbed species and then the adsorbed species concentration may be related to the flux. They 

are coupled, and you cannot normally separate them out. [We will stop here and what we will do 

next is to derive the expression for bounded Warburg impedance and after that we will go to 

what is called CPE. Constant phase element]. 


