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Time Domain Results

Now I want to give you an example where you can actually derive the values and you can get a

better idea for a case where you have resistor and capacitor in series. This is one example.

(Refer Slide Time: 00:21)

Another example is having resistor and capacitor in parallel. If you look at the second example, it

is actually simpler to solve. Previously, I told that you can get the current across the capacitor by

using the derivative,  

dE
C
dt

 will give you the current. From that we wrote that you can get the

impedance as 
C


 for the magnitude. You can write the impedance as   

1

j C
. So out here, I can



write 

1
j C

R


as the net admittance. First admittance of the top element is 

1

R
, admittance of the

bottom element is 
j C

. I can write total impedance as 

1
j C

R


 , (it is ) easy to do here as long

as we know what the impedance of each element is. Similarly, in the first example, I have to add

the impedances (to get the net impedance) because they are in series.

Impedance of first element is given by R. Impedance of the second element is given by

1

j C
;

and this will tell us the total impedance. Similarly, you can have more complex structures. You

can have structures where you have many resistances in series. You can have structures where

you have 1 capacitance and 1 resistance in parallel, another resistance and capacitance in series

in the same circuit. You can have one more resistance here. These are some of the examples you

will see later. But it is possible to do it using this notation. 

So I also want to show you how to use the differential equation and still get the same answer.

Sometimes it can be lengthy. Derivation can be lengthy but you will get better understanding by

going through that. Most of the time, we will just use the complex notation, add the impedances

or add the admittances and get the value but you should be aware of actually what happens when

you apply a potential or when you apply sinusoidal wave.
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So first we will take the circuit where you have a resistor and a capacitor in parallel. Current

through the top part, we will call it as i1 and that is going to be related to the potential applied

across the 2 locations between which the resistor and capacitor are connected parallel;

1

E
i

R


. It

is an algebraic equation. Current through the bottom part is given by the differential equation;

2

dE
i C

dt


. When you apply simple sinusoidal wave, we will write it as; 

 0
1 sinacEi t

R


and i2

we will write it as; 
 0 cosacC E t 

we have seen this before.

And the total current is the sum of the current through the top branch and the current through the

bottom branch. I am just taking the Eac0 outside this equation. 

   1 2 0

1
sin cosT aci i i E t C t

R
        

Now look at this, the magnitude of the impedance is going to be Eac0/iac0. That is going to be



1
C

R


. It is going to depend on ω. (This is ) because the capacitor current depends on ω,  (i.e.

it depends on the frequency).

The magnitude of the impedance is also going to depend on the frequency. The phase is also

going to be changing. Phase is not 90 °. Phase is not 0. It is going to be a combination of the

current through the resistor and the current through the capacitor. So the phase value will change

when  we change  ω.  Phase  value  depends  on  the  value  of  R,  value  of  C  and the  value  of

frequency.

This is relatively easy to solve. Meaning, you can arrive at this total current and you can plot it

for a given R, given C, given frequency. You can use Matlab or any programming language you

are comfortable with and plot current as a function of time for a given AC potential. You change

R, you change C, or you change ω, what is the effect. You can see it easily. And you can clearly

see the phase will change when you change ω.

Normally in an electrical circuit, we are not thinking of changing the R value or C value. You see

we apply different AC frequencies, we are going to get results and based on the results, we will

interpret  the  system.  Now  let  us  look  at  the  other  system.  It  is  going  to  be  little  lengthy

derivation. But I think it will be worth it.
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When you  actually  look at  the  circuit,  it  looks  very simple  and it  is  simple  with R and C

connected in series. Now I apply a potential across terminal 1 and terminal 2 and that is given by

the value E. We will write it as Eac0 sin ωt. The potential drop across the resistor, we call it as E1

and across the capacitor, we call as E2 and we can write the total potential drop is going to be

sum of E1 and E2, algebraic sum of E1 and E2.

 0 1 2sinacE E t E E  

Now the current through the resistor has to be the same as the current through the capacitor.

Whatever current comes to resistor, it has to go through capacitor. So I will write i1=i2. And that

has to be equal to the total current that we measure. We know the relationship between i1 and E1; 

i

1
1

1

E

R


and i2 and E2. Potential drop across the capacitor is E2; therefore, it is going to have the equation; 

2
2

dE
i C

dt


. Out of these, we know Eac0, we know ω, this is what we apply.

We know the resistance; we know the capacitance. What we want to know is, either i1 or i2. We

do not know E1 and E2. We want to eliminate this. We have 3 equations. We have E1, we have E2,

we have i1, i2. i1=i2; therefore, we can write this also as i1. We want to eliminate E1 and E2 and get



the value for i. Therefore, we can write i=a function of known values Eac0ω, R and C.

Now what I want to do here is to first get a value for E2. I want to write 

2dE
C
dt

. i1 is same as i2;

therefore, I will write it as  

1E

R
.  I will write it as  

2EE
R



. I can rearrange it and get it as an

equation

 02
2

1
 acE sin wtdE

E
dt RC RC

 

; R and C are constants now.

On the right side, you have sin(ωt), it is a function of t. E2, it is going to be a function of t. We

have seen this equation before, where P and Q can be constants, R can be functions of x. In this

case, our independent variable is t. Our dependent variable is instead of y, it is E2 but when you

have an equation like this, we use what is called integrating factor.
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When we use integrating factor, we would write it as exponential. In this case, we will write it as,

where we say at time constant τ, is a product of R and C. It has the units of time. We call it as

time constant. We will write the integrating factor as e power 
/t 

. Basically I am expecting that



we should be solving this equation and getting the answer for E2. Once you get E2, you can get

E1.

And once you get E1, you can get the current value very easily. We should expect to get the same

answer that we got by using the complex notation. If it is in series, we should get  

1
R

j C


.

Effectively, whether you use this complex notation or whether you use the differential equation

when we plot the current or when we plot the impedance, we should get the same answer.

If I use this, I will  be able to write; combining together after  multiplying by the integrating

factor, you can write like this.

 02
sin

t
t

acE tdE e
e

dt RC







So on the right side also multiply by the integrating factor. I can integrate this equation. 

 0
2 sin
t t

acEE e e t C
RC

    

C here  is  a  constant,  we  will  just  write  it  as  a  constant.  You  can  look  at  the  equation  of

integrating 

 sinaxe bx dx

You can do integration by parts.

Right now just take it for granted that this equation will give you an answer like this. 

   
2 2 2 2

sin
sin  

ax ax
ax ae bx be
e bx dx

a b a b
  

 

That is, you are going to have factor of 

2 2

a

a b
 and 

2 2/ ( )b a b 
you are going to have the same

integrant here. You are going to have 
 cosaxe bx dx

. This is after going through the derivation.



An easier way for you to check is to take a derivative of this expression and then verify that it

actually matches with the integrant there.

Now for the equation here, I can use this expression and I would get the value as 
2

t

E e

. On the

right side, I have a factor of  

0acE


  which is same as RC and in addition, I have 1/τ as a, ω as b

and on top of all this, I have an integration constant. It is a little lengthy but I do not think it is

particularly difficult. What we will do is substitute for the initial condition at time t=0, potential

is 0.

It is a sinusoidal wave, so Eac0 sinωt. Time t=0, sine is going to be 0. So it starts at 0, total

potential is 0, potential across resistance is 0, potential across the capacitance is 0. With that

initial condition, if you substitute here, we should be able to get the constant value. Then we

should compare what we get here versus what we get in the complex number notation.
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So yesterday, we were looking at this circuit where you have a resistance and capacitance in

series and if you write in complex notation, you can easily write the impedance as impedance of

resistor and the impedance of the capacitor, add them together, you will get the total impedance.

We can write the equation for the current and we have gone through the derivation.



(Refer Slide Time: 15:51)

And we can get  the potential  across  the capacitor  as E2,  right.  We will  get  a  fairly lengthy

expression. The point that I want you to note is that there is an exponential term. We know it is a

resistor and capacitor in series. So we know the potential across the capacitor. We can calculate

the potential across the resistor.

It is E-E2 will give you E1 and then divide by the resistance to get the current. So again you get

an expression saying E here is the potential applied. This is the potential across the capacitor.

The difference tells the potential across the resistor. Divide by the resistor value, you will get the

current.
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Now I want to give you an example. Let us say the resistance is 1 Ω. Capacitor is of 0.01 F. We

apply a sinusoidal wave of 10 Hz frequency, that means in 1 second you will get 10 complete

cycles. There are 2 ways of representing the frequency. F is the normal frequency, ω is called

angular frequency and that is going to be 2π f  and that is given in radian per second.

So if you multiply 2×3.14, whatever number of decimals, ×10, you will get about 63 radians per

second. Impedance of course you can calculate as 

1
R

j C


, j being the imaginary number and

you will get the value of 1-, and I truncated into 2 decimals. You will get 1.59 because you are

going to get 1/j. Once you get 1/j, it is going to be –j. ωC; ω is about 60. C is about 0.01. So you

are going to get 1.59. if I take the magnitude of this complex number; so if you visualize, you

have the abscissa and ordinate. You got 1 on the x axis, 1.59 in the y axis. So it is going to look

like a vector in this direction. The magnitude of that vector, you will calculate it as r;

2 2r x y 

and you are going to calculate the angle as;

1 ytan
x

 



You will get an angle of about 58 ° and amplitude of about 1.88.

Without solving the ODE, you can get this value. This is lot simpler than solving the ODE. But I

want to show you what happens when you solve the ODE, the expression in the previous slide, I

want to plot the potential in the blue colour line. The current, of course, it is not in voltage. It is

going to be in amperes. Current, when you plot it, accounts for the exponential term also. That is

you have all the 3 terms that we saw in the previous slide.

We can go back there. See you have one set of terms here and then an exponential term here.

This exponential term will go towards 0 at longer time. So in the beginning, you have all the

values of importance. Later, this is going to be negligible and the remaining terms will come into

play. So when we plot the entire expression, what we get is current starts at 0, it goes up, down,

up, down and so on.

The first cycle and the second cycle are not identical. Second to third, there is more or less same.

And after that it appears to be pretty much the same. Also notice, although both potential and

current start at 0, after sometime, there is a phase difference. We are not synchronised. I have

plotted it for time duration of 10 s to 10.2 s. So at 10 Hz, that means 2 cycles are there. 0.1 s is 1

cycle.

You have 2 cycles of potential. Now look at the current value. It has a phase offset and that is

stable. So this type of result is called steady periodic. That means it is not steady value. It is

periodic. For 1 oscillation to next oscillation, it is not different. So after sometime, it achieves

steady periodicity. In the beginning, there is some transient also. Later the transient becomes

negligible.

That information does not come by looking at the complex plane notation and adding

1
R

j C


.

What you get in the complex plane notation is the steady periodic result. It does not tell you that

there is going to be transient in the beginning. It does not also tell you how long it will take for it

to stabilize. Here within a cycle, it stabilizes. Second to third cycle, there is not much difference.



But later, we will see example where it takes longer time to stabilize. It is not 1 cycle. You may

have to wait for many cycles. Now how do you know that these 2 results are correct, that is I

have a magnitude in phase based on one type of calculation. I have plotted current as a function

of time using the ODE and they should give me the same result. At a very crude level, visually I

want to see this.

This is 0.05, this is probably around half of this. So I can say magnitude of the impedance is

going to be potential/current. It is going to be roughly 2. This is 1.88. So if you just eyeball, it

looks okay. it does not look wrong. I want to look at the phase. Starting points of these 2 cycles

are identical. It is going to be 0 ° phase difference. If the peak occurs at this location, it is going

to be 90 °.

Peak in the red line occurs little after the blue line crosses 0. So it is between 0 to 90 °, 60 looks

okay. This is the very superficial level of checking. At this level if it does not match, we have a

problem. Slightly better way of checking is to actually go in and measure the magnitude or the

maximum peak here.  We know the maximum here,  take the ratio,  it  has to be 1.88 or 1.87

whatever the number of decimals we have.

Similarly, find the exact time where this crosses 0 and you can calculate the phase. We know the

period. Entire period is 360 °. The distance here in the time scale will tell us the difference. So

we find this distance divide by the entire period, multiply by 360, should give us the phase

difference and that should come to 58. Since the current comes before the potential, 58 here will

become -58 ° for the impedance. That is a slightly better way of doing it.
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Even better way of doing it is to fit this curve to an equation saying
 y asin bt c 

. We have to

verify that b comes out to be the same as ω. ‘a’ here will be amplitude. And c here will give me

the phase. I can take Eac0/Iac0 to get the magnitude and check whether it is the same as 1.88. Phase

of the potential is 0. Phase of the current is whatever we measure here and if I will take this

equation and calculate the phase, I should get this as 0-phase, (so it) should be -58 °. This is the

third choice.

First is to just eyeball. The level you have to make sure it is not wrong. It does not tell you it is

correct. It says it cannot be very wrong. Second level is to look at the actual locations where they

are crossing and then do this. Third level is to fit it to this equation. And the fourth level is to take

this current data and do what is called Fourier transform.
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We will go into the details  later but using Fourier transform, you can get the phase and the

magnitude at a particular frequency. You may have a wave with multiple frequencies combined

together. Even then you can use Fourier transform. There are certain ways of doing it so that you

can get the data correctly. When I say do the Fourier transform, you are going to get numerical

values here. You do not have data at all time. You will have data at certain time intervals. 

So you have discrete data. It depends on the sampling frequency. In the actual experiment, it

depends on the time we give in the ODE solution. So it is discrete data and pitfalls in using

Fourier transform to extract the information. Right now we will not worry about it. We will say if

you do Fourier transform, you can get the phase and magnitude at any given frequency and use

that to compare with the magnitude and phase based on this. 

So sometimes you will have to use the ODE to solve, to understand certain things. You also get

to know one more point. If I take the first cycle and fit it to this equation or do Fourier transform,

I will not get the correct values. I have to wait for some time and take the steady periodic results.

That means when you do experiments, you will have to apply the cycle, wait for some time for

the system to stabilize or for the response to stabilize and then take data, that data is going to be a

good quality data.

You want to take it as fast as possible, it is not necessarily going to be good quality. Sometime



you will have to compromise. If the system degrades over time, you will have to say fine, I know

it is not good quality but I want to take it in the beginning itself. I want to take after sometime,

etc. But you should be aware of what you are getting.


