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[So I want you to look at this carefully because this forms the basis of all the other examples

that we see later]. We are looking at a reaction with two steps; metal losing an electron and

forming a species which is normally called as Metal+ adsorbed ( adsM  ) [in this literature] and

in the second step,  adsM   goes into solution. So here I have drawn a picture with spheres

representing metal atoms (refer video). The top level represents the surface. The next level is

below it. The electrode is exposed to the solution and solution is exposed to the top layer and

the  metal  atoms at  lower layer  are  not  exposed to  solutions.  If  the  first  step happens  at

particular rate k1, first step involves the transfer of electron. We can guess that k1 is going to

depend on the potential. If I give more positive potential, I will pull up or I will remove all

the electrons that I will drive the reaction in the forward direction. k2 on the other hand, on

the left side it is adsM   and on the right side it is solM   . Therefore if I change the potential, k2

will not change. [I do not have any reason to expect that the k2 will change]. If the electron is

not involved and if there is no charge transfer, then the rate constant is not going to depend on

the potential. 



Now let us consider one atom (refer to video). It loses an electron. We are giving positive

potential  and the electron is  pulled into the metal  [we are of course connecting with the

potentiostat]. Therefore when we apply a positive potential, it means that we are removing

the electrons. It goes in, and this atom is called as M+ adsorbed species. It is not an atom

anymore; it is an ion. Normally in chemical engineering literature or even in other science

literature if material comes from outside and sits on top you will call it as adsorbed material.

In this literature, the adsorbed here means you can lose an electron and this is a different

species now. They would be called as adsorbed species. Here the metal atom, adsorbed metal

ion and the metal ion in solution; if that goes into the solution, which is a second step. The

transfer of an electron resulting in a blue colored ion here is the first step and this picture

represents the second step (refer video). This metal adsorbed species has gone into solution

and that is  called solM  .  This metal  atom is now exposed to the solution and this  forms a

surface. Now this can lose an electron and become adsM  and this can go into solution, this can

lose an electron and become adsM   (refer video 3:12). We do not think this is going to lose an

electron, surface can lose an electron only after this goes, the atom below becomes exposed

and that can go into the solution. So the first step is represented here and the second step is

represented here (highlighted in orange colour). 

Let us say total number of sites available on the surface is given by the letter capital Γ. I am

going to call θ as fractional surface coverage of adsM  . So what I do is, I calculate how many

such sites are occupied by adsM   and see what the total number of sites are. That ratio tell us

that  say 30% of the sites are occupied by adsM  ,  which means 70% of the sites are metal

atoms. Now the first reaction can proceed only from vacant sites. We call the remaining metal

atom as vacant sites. So a metal atom can become adsM  . If it is already adsM  , it may stay there

or leave. If I say this reaction is reversible, then I can say it can take an electron and become

metal  atom again [but we are not considering that case now]. We are considering only a

simple forward step for the first step and a simple forward step for the second step which

means once it goes into solution, it is not going to come back again. That is an assumption

here. These are only 2 forward step. Once we learn how to handle this case, we can derive the

expression for reversible reaction, more complicated reactions etc. [and I will show you with



examples].

I want to know what happens to the fractional surface coverage of adsM  with respect to time.

k1 tells the rate at which the forward reaction can proceed. Forward reaction can proceed

when k1 is a finite number and when M species here is available. If all the surface is covered

with adsM  ,  I  will  not  have  any more  of  the forward  reaction  because  no vacant  metal  is

available. In the forward reaction, first reaction rate is given by k1(1- θ), θ tells how much

fraction  of  the  surface  is  covered  by M adsorbed,  1-θ  tells  how much  of  the  surface  is

remaining as M. Therefore I want to write the reaction here are considered as elementary

reactions. If I know the species and I know the rate constant, I can write the rate of the first

reaction as k1(1- θ). Rate of the second reaction is going to be k2θ. If θ is 0, it means there is

nothing  on  the  surface  in  the  adsorbed  metal  state,  and  then  I  cannot  have  any  second

reaction. If θ is full, I will expect lot of reaction and lot of this second reaction will happen.

Also rate of the reaction will be high. Here, θ is between 0 to 1. It does not have units because

it is a fractional surface coverage. That means how many sites are available with M adsorbed

species and that will be in moles/cm2 divide by total number of sites that are available in

moles/cm2. It means the way we have written, θ does not have any units, but units of Γ is

going to be moles/cm2. The units of k is going to be moles/cm2sec and units of k1 and k2 will

be the same here. Some literature may give k1 as second inverse and then it will use Γ minus

another notation maybe β, where beta is going to be moles/cm2. When you read the literature,

you have to see how they are defining those terms. Here instead of dθ, it is going to be dβ/dt.

So instead of having Γdθ/dt, I might write it as dβ/dt and it is going to be k1(Γ- β)- k2β. It is

just a different notation. The equation we have written is called as mass balance equation.

Here we are assuming certain things: we assume mass transfer is fast, we are going to make

an assumption that k1 is going to be written as k1eb1E.  It is is exponentially dependent on

potential. We are assuming that Langmuir isotherm model works here. That means if I have

M adsorbed here, what is the probability that this atom will lose an electron and will become

M adsorbed. We have a number. What is the probability that another atom which is far away,

will lose an electron and become an M adsorbed? We assume that they are all the same, they

are not dependent on whether the neighboring site is already M adsorbed or not. So another

assumption is that there is no interaction between the species. We assume that all sites are

equal which means we do not think one present on this row is more likely to lose an electron

compared to one present on this row (refer video 8:56). These are in pictorial and that’s why I



am representing in terms of one row and another row. We are saying all of them have equal

energy levels. 

If they have different energy levels you will  have to use another isotherm called Temkin

isotherm. If you think that there are interactions, which means presence of one species can

help or hinder formation of same species or different species,  we will  use what is called

Frumkin isotherm with interaction parameter. If it is positive or negative, it is going to say

that is more likely to happen or less likely to happen etc. However for simplification, we are

going to say this is Langmuir isotherm.

If we say it is under steady state, it means the fractional surface coverage of θ is independent

of time. You would expect steady state if you do not apply any potential and if the solution

concentration and other things remains the same, or you apply constant potential,  wait for

sufficient time and system reaches a steady state.  Then I can say dθ/dt is 0 and it  is not

varying with time.

(Refer Slide Time: 09:59)

Then I am going to call that k1  at that DC potential as k1dc which means k10eb1Edc. We have

applied a DC potential, it maybe 0 (in which case we are not applying any potential), it may

be a fixed number, non-zero number and we wait for enough time, we will get a stable current

and we will get a stable surface coverage. If we change the DC potential, go to another value,

wait for enough time, I will get another surface coverage and another current value.

So at this condition I can set this to 0 and I will call the k1 as k1dc which corresponds to that



specific DC potential and I will call the θ, fractional surface coverage as θss to indicate it is

steady state.  We have done this  before  in  Langmuir  isotherm model  [not  in  this  course,

perhaps you would have done it in chemistry]. You can rearrange this and get the steady state

value of θss [I would like you to actually do that. You can see it in the PPT, but why not try

this it is not that difficult. So I would like you to start with this and get a value of θss in terms

of k1 and k2,  k1dc and k2.  The reason is next I am going to tell  you how to calculate the

impedance. It is a lot easier if you actually try this, learn the steps then we will go through

one or two more types of reaction. Once you try it and then get this it will be lot easier for

you to look at a new mechanism and do this. If you see it in the PPT here, you will feel that

you have learnt it, but you may or may not have learnt it well].

(Refer Slide Time: 11:51)

Calculate the value of θss, it is very simple rearrangement and you would get k1dc/(k1dc+k2).

Now I want you to guess, k2 is a constant, k1 is going to increase when I increase the DC

potential. When k1 is a very small value, θ will tend towards 0 and if k1 is a very large value,

θ will  tend towards 1, it  would not tend towards infinity. [so it  makes  sense].  Fractional

surface coverage has to be in between 0 to 1 and it will go to 0 when you go to very negative

potentials. We are assuming that the reverse reaction is not possible. When you go to negative

potential, you cannot assume that. Even when you go to 0 potential, you have to assume that

reverse is possible. If you are on the very positive potential, then you can neglect the reverse

reaction, because you are just going to take out all the electrons. It is not going to come back

to the M species.



The current under steady state condition, current for the faradaic reaction comes only from

the first step. Current for the capacitor will be there if you are applying an AC potential. If

you apply DC potential, that metal solution interface which you can visualize as a capacitor

will not pass any current under steady state condition. 

If you apply an AC potential, capacitor will pass current, in addition, applying AC potential

will make this reaction go faster or slower. When the potential increases, it is going to go

faster when it decreases it is going to go slower. If it is periodic, we expect the reaction to

become faster and slower accordingly. So if I say this is the rate constant value at a DC

potential, this is the k1dc  (refer video 13:55). So potential is DC up to sometime and then if

you apply an AC, rate constant will also move up and down. Along with the movement of

rate constant the fractional surface coverage will also move up and down that is θ will also

move. Combination of θ and k1 together will tell us how the fractional surface coverage will

move as per this equation. So when we apply AC we cannot neglect this and we cannot say

dθ/dt is 0. When we have a DC when it is under steady state only we can set this to 0; under

AC we have to use the full equation.

 “Professor - student conversation starts” 

Sir can you repeat what k1(1-θ) represents. Is it the number of electron transfer?. 

k1(1-θ)  tells  the rate  of  first  reaction.  It  is  moles/cm2sec.  k1(1-θ),  θ  does  not  have units;

moles/cm2sec.

 (Refer Slide Time: 14:50)



So k1(1-θ) represents the rate of the first reaction. Now the first reaction gives one electron. I

can have another reaction where M becomes 2
adsM  + 2 electrons and 2

adsM   goes into solution.

Copper can become Cu2+, Cu2+ can go into solution. In that case, I will say, rate of the first

reaction consumes M surface at this rate of k1(1-θ), number of electrons produced is 2. This is

still moles/cm2sec.

Now faraday constant converts the electrons to Coulomb or moles into Coulomb. So I had to

multiply by F which is Faraday constant,  Coulomb per mole of electron.  So in this case

because it is single electron transfer, I am not showing the number one multiply by this to tell

how much current will come. It is going to be Coulomb/cm2sec; Coulomb per second will

become amperes, amperes per centimeter square. So although I say it’s current, it is actually

current density. It is not current. 

[……….]

k1(1-θs) is a number of surface atoms that are consumed, so it is number of surface atoms that

are consumed by the first step. It is also equivalent to the number of  adsM  produced by the

first step, it is also equal to number of electrons produced by the first.  

[………….]

So number of electrons will become 2×rate of that reaction.

[………….]

No here the k1(1-θ) represents the number of M surface atoms that are consumed by the first

reaction,  because you can look at  this  equation and say this  equation gives one electron.

Therefore, it is equal to the number of electrons produced by this step. [I do not know where



the confusion is]. 

[………….]

Surface atoms and we calculate how many electrons are produced by that. 

(Refer Slide Time: 17:43)

I would write k1(1-θ) as a number of electrons produced by the first step or forward step I

might write reverse reaction as k-1θ. That tells number of electrons consumed. So the net

number of electrons produced are given by k1(1-θ)-k-1θ.

[…………..]

Yes, for example here, the second step does not produce or consume any electron, therefore it

is not all showing up in this equation. Whereas when you look at θ, θ equation first produces

θ and therefore it is positive number here. Second reaction consumes θ and therefore it is a

negative number there. So we write the equation based on the reactants usually. We will say

k1  (1-θ)  represents  the  number  of  moles  of  M  consumed  (moles  per  unit  area  that  is

consumed). For electrons we had to calculate as per the equation. First equation produces

adsM  . So when I look at adsM   balance, I will consider first equation and the second equation

because it is involved in both. When I look at electrons produced, I do not have to look at the

second equation because it is not at all there. I have to look at only the first equation.

“Professor - student conversation ends”

(Refer Slide Time: 19:12)



So if we look at the steady state current, it is going to look like this (refer video/slide). It is

not  really  going to  be  valid  at  DC potential  of  0,  because  at  DC potential  of  0,  that  is

equilibrium. I will have reversible equation, but we will not worry about that now we will say

when it is little farther away from 0, it is in the positive direction. k1 will keep increasing with

potential, θ is going to increase with potential. When Edc is large, θ is going to be close to 1.

1-θ is going to be close to 0 and this expression Fk1dc(1-θ) can be calculated from this. This is

going to give you Fk1dc k2/(k1dc+k2). When I take this into numerator and to the algebra and

this I can divide it by k1k2 on the numerator and denominator. The numerator divided by k1k2,

the denominator/k1k2 and when k1dc is going to be very large number because I am going to

very large DC potential. This term I can neglect it; it is going to remain a constant. So the

Faraday current is going to increase up to some level and then it is going to remain a constant

although we have assumed that mass transfer is not a problem. The signature if you look at

this will look somewhat similar to a mass transfer limited case, even though mass transfer is

rapid. [Does it make sense?]

If  you  look at  the  current  versus  potential,  when I  go to  intermediate  level  of  potential,

current increases with potential, and when I go to large potential, current saturates and if we

have a  simple  reaction  which you have seen earlier, when it  is  kinetic  limited  and mass

transfer is very rapid, we know that it is going to give an exponential curve (refer video).

Whereas when it is mass transfer limited, although we have not derived it, I have showed you

the example it is going to go like this and saturates. So when you look at the signature you

cannot always immediately come to the conclusion that it is going to be reaction number one

with mass transfer limitation or it is going to be reaction number two which we are seeing



now with large potential even though there is no mass transfer limitation.

Here  what  happens  is,  when  you  go  to  large  potential  entire  surface  is  covered  by  M

adsorbed. k2 is not going to increase with potential because it is independent of potential.

There is no electron transfer. So the rate of production of this species solM   is limited by this,

it is saturating and you cannot have anymore of the first step because it is already pretty much

covered by adsM  . It is not 100% covered and it will never go to zero current. It will go to a

maximum current and remain there and therefore this is steady state behavior. 

(Refer Slide Time: 22:44)

[Now the fun starts]. When you to AC, we used the notation that E ac is going to be Eac0sin ωt,

we will vary the ω, we are going to assume Eac0 is small and we know that we can write k1 as

k10eb1E and in general, we will write it as K10eb1(Edc+ Eac) where Eac0sin ωt. And in general, we

know we can write it as b1Edc and this can be approximated by 1+b1Eac when Eac is small. Eac

is small when Eac0 is small, because sign can be between + or -1.

We have done this in the previous case when we have simple electron transfer reaction, we

said kforward if  I apply DC+ AC, I will  write it  as kfdc(1+bfEac).  In this  case,  it  is  b1Eac.  k2

remains a constant. It is independent of the potential.

(Refer Slide Time: 24:02)



Now I want to write the faradaic current. When I apply a DC potential and super impose an

AC on top, I expect a current to also have an oscillation. I want to know what the oscillation

is,  so I can write  the current as DC current + AC current.  Then I can write the faradaic

impedance as Eac/iac. So I am really measuring the differential impedance. So what I want to

do is take the current, this is given for DC and I want to write it for AC and derive the

expression for impedance. In general, the current is going to be Fk1(1-θ) where k1 can be time

varying and θ can be time varying.

(Refer Slide Time: 24:59)

So I know how to approximate k1, k1dc(1+b1Eac) when Eac is small. This θ also, I know it is

going to vary with time because the rate constant k1 is varying with time, surface coverage

also will vary with time. I have to find how these are going to vary. [So our goal is to find,

this is not a constant, this is going to vary, how is that varying]. It is going to help me figure



out how to write IF as iFdc and iFac.

(Refer Slide Time: 25:32)

So we have this expression, this is an approximation symbol. In general, surface coverage is

going to vary with time, it is going to vary with potential. We are going to write it as Taylor

series. Initially surface coverage was at steady state value. DC potential was applied then we

start applying an AC potential we will say it deviates slightly from the DC value. Therefore

we will write θ as θss. It is like if we have a function of x and you know the value at x0, we

can write x+ h. If you know the value at some location very close to that location, it is going

to vary a little and we are going to write like this. So here θ is the function. We will write θ at

steady state+ first derivate evaluated at 0. Here it is Edc. Small change we are going to write it

as Eac. It is still a variable, but we are going to just use the same formula here. Eac is not a

constan. Eac is Eac0 sin ωt. Then 2 factorial, second derivative, Eac
2 and so on. It is going to

have more derivatives. Since we say Eac is a small number, we can say Eac
2 and higher order

numbers can be neglected.

(Refer Slide Time: 27:21)



That means we can write θ as approximately equal to θss+ dθ/dE at Edc. I need to evaluate θ as

a function of E. We need to see how the surface coverage is going to change with respect to

potential, which means I can go to the original current equation [please substitute and write

this]. So originally this equation was Fk1(1-θ). Instead of k1, we are writing it in Taylor series

and then truncating. Instead of θ, we are writing it in Taylor series and truncating. [Now I

want you to do this]. Fk1dc remains outside, this is one term here and another term here. Here I

would like you to consider this as third term and this as fourth term. You have something like

(a+ b) multiplied by (c+ d). We are going to get ac + ad + bc+ bd, four terms are going to

come out of this. One is a constant, 1-θ is a constant. This depends on Eac this depends on

Eac (refer video). So you will get four terms out of which, one is going to be a constant,

another is going to have Eac, third term is going to have Eac, fourth term will have Eac
2, and

since we have neglected Eac
2  and higher order terms earlier, saying they are not significant,

here also, after getting the 4 terms, we are going to throw away the 4th term and keep only 3

terms. θ is going to vary with potential. How would you write a Taylor series for F(x) (Refer

slide or video for expansion)? [We have to find that I have not yet come to that, so that is a

next step]. What we do here is to say, I want to write the current in terms of AC and DC

components. In order to do that, I have to write any variable as Taylor series, truncate after

the  first  term,  first  term here meaning Eac is  significant,  but  Eac
2 and  Eac

3 and  so on are

negligible.



“Professor - student conversation starts”

Depends on the system. I will tell you practically how it is. If you measure a 10 millivolt for

normal  system,  (I  am  not  talking  about  batteries  and  fuel  cells  where  you  usually  use

galvanostatic method). For corrosion, for electro deposition, if you are using 10 millivolts,

nobody will  complain.  10 millivolts  peak or  20 millivolts  peak,  you  can  probably get  it

accepted in most cases. 20 millivolts rms maybe, 50 millivolts people will start complaining.

5 millivolts nobody will complain, but the signal to noise ratio may not be good. Noise level

is going to remain at whatever level it is in. everybody will be happy for 1 millivolt, but the

people will start doubting the authenticity of the data if it looks really good. So the correct

answer is,  it  depends.  [that  probably is  not  going to make you happy].  5 millivolt  to 20

millivolt you can probably manage. I do not know if it is going to be linear at 20 millivolt, it

may not be linear, but people will not question the assumption that you can approximate that

as a linear response. If you want to know whether it is linear or not you have to measure what

are called as harmonics and at 20 millivolt you will get some harmonics.

[…………]

You also have to measure, if I do it at 10 millivolt and if I do it 20 millivolts, if the impedance

values are same in the entire frequency range, I can take that as a linear system. 

You have to do that and we also have to measure the harmonic and show that they are below

the noise level.  Then you can say this is linear, but it is going to take lot of work. So 5

millivolt  is  considered  good.  If  you  go  to  fuel  cells,  or  batteries,  it  is  usually  done  in

galvanostatic  mode,  which  is  a  completely  different  story.  It  means,  with  whatever  little

evidence we have, if you apply a perturbation sign wave of 10 milliamps, 100 milliamps, 200

milliamp you may get higher harmonics. But for whatever reason it appear that, if I measure

just the impedance, look at the potential perturbation and calculate the impedance, it does not

seem to vary that much with increase in iac0. [We do not know why, but that seems to be the

one we have seen so far]. So there I do not have a real number to tell below this value it is

really linear, above this value it is not linear. It looks like it is going to be linear in a large

range linear which means if I apply 100 milliamps or 200 milliamps per square centimeter of

perturbation, I may get more or less same impedance although the second or third harmonic

are there to significant level. [Why it behaves that way I do not know it].

“Professor - student conversation ends”



Coming back to where we stopped, we are basically expanding k1 in Taylor series, we are

expanding θ in Taylor series because we recognize that they are going to depend on potential.

When potential varies with time this is going to vary.

(Refer Slide Time: 33:11)

If I substitute it back here, I would get four terms here, F1kdc is there. I will get 1 multiplied

by 1-θ. I will get b1Eac, so I will have F1k1dc b1Eac (1-θ). I will get F1kdc; constant here 1; this is

going to be –dθ/dE multiplied by Eac and the fourth term is going to be this term multiplied by

this term which is going to give me [actually I think I miss the sign here], –dθ/dE b1Eac,  b1 is

here F1kdc is there. Therefore, it is going to give me 4 terms out of which the greyed out term I

am removing because it has Eac
2. 

(Refer Slide Time: 34:14)



So for this reaction with linearization, I can write the faradaic current as this. I am going to

call this as the DC, which means,  it depends only on DC potential and it does not depend on

AC. This is the AC components which depends on the DC potential as well as on the AC.

Now the only problem here is we do not know what dθ/dE is. In order to get the dθ/dE, we

need to look at the mass balance equation. 

“Professor - student conversation starts”

Yes, we are at DC and then we apply AC. Therefore θ is going to vary away from the DC

value.

(Refer Slide Time: 35:20)

[…………….]

E is the potential  and that is Edc+ Eac. So this is like x0+h. so h is representing the small

deviation and x0 is representing the DC level. 

[…………]

Yes, the way in fact we have written is θss corresponds to θ at the DC potential of Edc. That is

what we have told earlier that θss can be derived at a steady state potential.

“Professor - student conversation ends”



 (Refer Slide Time: 35:58)

This equation we have seen before and it is for unsteady state (Refer slide or video). For

steady state,  we said  dθ/dt  to  0  and  then  get  the  values.  Now I  want  to  write  first  the

expression on the left hand side dθ/dt, the θ varies because we are applying in AC potential.

We know how the potential changes with time. So I want to write it as dθ/dE dE/dt. There are

couple of ways to write dE/dt. One, we can call dE/dt as this where E is the sum of DC+AC.

When you take the derivative of DC, it goes to 0. When you take AC, this is Eac0sin ωt. [There

is a small mistake here]. It is DC+ Eac, which is written as Eac0sin ωt.  The ω comes, sine

becomes cosine. I would write it as ωEac0cos ωt and this I can write it as omega ωEac0sin ωt

with a phase off set of π/2.

In a complex plane, if this is a vector, a phase off set of π/2 pushes it up. This is real this is

imaginary (refer video).  So one way to write that is,  if you multiply a number by j  it  is

causing  rotation  by  90  degree  in  the  complex  plane.  If  you  give  any  complex  number,

multiply by j, that j is the square root of -1. It is going to be equivalent to rotating that with

this  origin  as  the  center. So I  can  write  this  expression  as,  take  this  value  of  sin  ωtE ac0

multiply by ω and then say that it  is equivalent to multiplying by j  and I would get this

expression as jωEac. It is another way to derive this. You can say E is Edc+ Eac0ejωt where it is

actually cosωt+ j sin ωt. So it is a complex representation of the potential. When you take the

derivative of this, it is going to be jω. This Edc is going to go away. It is going to jω multiply

by Eac0ejωt which means jωEac. So the point to note is dE/dt in the complex notation that we

write is going to be jωEac. Substitute it back here, you can write Γdθ/dt as jωEacΓdθ/dE. [I

would like you to be able to derive this properly because everything else that follows depend



on you doing this correctly in the next few steps. I will start with the next one and continue

tomorrow].

We have expanded the left side, we had to expand all terms in Taylor series, chop off the term

after Eac, Eac
2 and so on can be removed. Rearrange to get an expression saying dθ/dE equal to

something where everything on the right side is known to us. Then we can go and substitute it

here. [This is lengthy, but it is not very difficult as long as you do the algebra correctly, and

expand  this  term  correctly,  as  long  as  you  recognize  this  part,  it  can  be  written  as

jωΓdθ/dE×Eac.  You  will  find  that  regardless  of  how  many  steps  are  there  in  a  given

mechanism,  how  many  intermediate  species  are  there,  you  will  be  able  to  write  the

impedance for all of these. [It may need 10 pages of derivation, but it is not going to take

anything more than writing in Taylor series chopping off after some time, doing up some

algebra  and recognizing  this  mass  transfer  equation].  The  left  side  of  this  mass  transfer

equation can be written like this (refer video). And all these are applicable when we say mass

transfer is very fast and it is mass balance equation right not mass transfer equation.

(Refer Slide Time: 40:30)

So k1(1-θ)-k2θ, I am going to write approximately as k1, I am going to write in Taylor series

and chop off, I am going to write 1-θ in Taylor series and chop off, k2 is a constant and θ, I

can write again in the same way, get all the terms, keep the constant, keep the term with Eac

and throw away the term with Eac
2. In this case, you would not get anything beyond Eac

2. In

some cases, you might get even more than that, you may get Eac
3, if I have 3 products k2, θ1,

θ2 in some expression, does not matter, keep only Eac on the constant term.

(Refer Slide Time: 41:12)



We are going to keep the equation here, substitute it. For this, we are going to substitute from

here. k1(1-θ)-k2θ. [I have shown it here, but I would like to actually do that and get it because

first time you may or may not get it correctly. I would like you to actually try that and get it. I

will stop here now, but I will continue with this tomorrow and then finally we will see the

expression  for  faradaic  current  write  it  as  DC+ AC and  we  will  get  the  expression  for

impedance and then if you plot it, how will it look like in the nyquist plot or complex plane

plot.  I  will  show now how it  looks  like.  After  doing all  this,  it  is  going to  look like  2

semicircles possibly 2 semi circle depending on the DC potential. The radius or diameter of

this  semicircle  will  vary,  but  you  can  represent  all  of  them by  this  Maxwell  circuit  or

equivalent wide circuit or ladder circuit].


