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In this session we will discuss about what we can do for the physical interpretation of resistance

and capacitance when you have a complex reaction.
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Consider this reversible reaction. We want to say the impedance spectrum can originate from this

reaction and when I make some changes, the reaction has changed accordingly. We would like to

assume a reaction say, A going to B actually happens in different steps. A goes to intermediate

species,  intermediate  species  goes  to  the  product  B  or  A goes  to  intermediate  (I1),  that

intermediate goes to another intermediate (I2) and then it goes to the product and similarly, the

reversible  reaction.  Another  possibility  is  A  can  also  directly  go  to  I2.  Similarly  many

possibilities  exist.  Many of the reactions  of importance  do not  happen in 1 step.  If  I  say 2

hydrogen ions take 2 electrons and form a hydrogen molecule and go out as gas bubble, it does

not happen in 1 step. It happens through multiple steps.

2H+ + 2e-                    H2 (g)

Similarly, oxygen evolution reaction to oxygen reduction reaction do not normally happen in 1

step. They happen through multiple steps. If they happen through multiple steps, can we find out

the rates of each step? If you know the slowest step, you can hope to increase it or if you want to

suppress something, you can possibly reduce it further. Similarly you can have a better idea in

this regard.

Assume you prepare and characterize a catalyst  for a reaction,  you want to characterize the

reaction occurring through the catalyst. For that, you will have to look at few spectra together

and then interpret what is happening in the reaction. In summary, we should be able to interpret

the mechanism. That is not very easy. What we have to learn in the beginning is, if we know the

reaction, I should be able to tell the corresponding spectrum. Therefore you get an idea for the

spectrum corresponding to different types of reactions. In the case of electrical circuits, we found

that we will get a particular spectrum corresponding to the capacitor or resistor arranged in the

circuit. If you have an arrangement with more capacitors, you will get a spectrum accordingly.

Similarly if I get a spectrum, I should be able to model it with a corresponding circuit. Likewise,

I would like you to become familiar with the process of first proposing a reaction and proposing

rate constant. So if I know the rate constant for a particular reaction, I should be able to generate

the spectrum. At different DC potentials, it will give me particular type of spectrum. 



The reverse problem can be attempted after knowing how to do the forward problem, because the

reverse problem involves optimization. You have to propose a reaction, vary the rate constant

and then see whether you can fit all the spectra nicely. In order to do that, you should be able to

generate the spectrum if you have the reactions and the rate constant. Only then you can vary

something and do the corresponding fitting. If you cannot even generate it, I will not be able to

do the optimization. 

Initially, I want to start with a simple reaction. 
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Although the species looks complex, reaction is considered simple. It is called ferro/ferri redox

couple. 

4 6[Fe(CN) ]K                       3 6[Fe(CN) ]K K e  

K+ and e-  are not usually written. It is one iron atom surrounded by cyanide molecule. This is

considered as simple reaction because this does not need rearrangement of any of these atoms.

This Fe(CN)6 whole group gets an electron or gives an electron without any rearrangement. That

means it can happen without it adsorbing, going through any rearrangement and coming out. If I

take only Fe2+ ion, it is usually surrounded by water molecules/ water dipoles. If I want to adsorb

it on a surface and remove an electron or if it is Fe3+ and I want to add an electron, I have to

remove the water molecules. It has to adsorb, it has to spend some time there, remove that water

molecule and then get adsorbed on it. When it goes out, it will again get hydrated. In case of

ferro/ferricyanide, it does not have that much charge per unit volume because as it has a large

molecule and water dipole does not bound strongly to this. It is easy to give or take an electron

from it. So this is normally taken as a classical system in many labs. If we suspect something is

wrong,  we take  gold  electrode  or  platinum electrode,  introduce  it  to  this  redox  couple  and

measure the spectrum. If it comes correctly, the system is well and good. If it does not come

correctly, there may be a problem with the reference electrode or the instrument and we have to

sort it out.



This reaction can be represented as

A                    B++e-

A and  B had different  charges  and  it  is  a  reversible  reaction.  The  forward  rate  constant  is

represented as kf, and reverse is kr. So the net rate is:

Rate = 
2 3[ ] [ ]f rk Fe k Fe 

The square brackets indicate concentration. Activity coefficient is assumed to be 1 here. Net rate

is going to be forward minus the reverse. The rate constants will change with potential  as it

involves electron transfer (forward reaction gives an electron reverse reaction takes an electron).

So I am writing the rate as:

Rate = 2 3
0 0e [ ] e [ ]f dc r dc

b E b E
f rk Fe k Fe 

It means kf = 0 e f dcb E

fk Edc  is DC potential. Now we look into the case where we apply only DC

potential. Later we can see what happens when you apply AC potential. First we should know

what to expect when you apply a DC potential. The notation bf represents how much the forward

rate will increase if I change the potential and br tells how much the reverse rate constant will

increase or decrease if I change the potential.  Now I have taken some values (refer slide or

video). It depends of course on the electrode surface. If I take graphite, I will get a different type

of reaction or different rates. I have taken the concentration of ferro and ferri to be 5 millimolar. I

had taken the value of bf and br to be close to ±20 with inverse of voltage as the units. This bf is

actually going to be:

f

n
b

RT

F

 R is the universal gas constant and T is the temperature in Kelvin. F is the Faradaic constant; n is

the number of electrons involved which means it is 1 here. α is called charge transfer coefficient.

Assume α to be 0.5 and br is going to be
(1 )F

RT

 
. If I take α to be 0.5, then this is going to be

same as the first equation with a negative sign. So I have used some arbitrary temperature values

(25 or 28 Celsius to get this value). I have taken solution resistance to be zero.

Mass transfer is assumed to be rapid which means concentration of 3 & 2 will not be different.

When I apply a potential, it will still remain the same. Whatever is consumed will be replenished



very  quickly  and  whatever  is  produced  will  go  out  quickly.  Therefore  concentration  is

maintained uniformly everywhere.  If I  calculate  the rate  and multiply the rate with Faradaic

constant, net rate will tell how many electrons are released. Faradaic constant will tell how to

convert this to current in coulombs. Rate is moles/cm2time-1. So after multiplication with faradaic

constant, I will get amperes (coulombs/unit time/cm2). 

In the linear scale, when we plot current versus potential, we will get a graph as shown in slide.

This first  term is  going to exponentially increase and here it  goes towards zero (refer video

10:05). br is negative, which means the second term is given by the line at the bottom. Algebraic

sum of these two gives us the green color line which goes through zero (refer slide or video). At

Edc  to be 0, kr0 and kf0 are equal and Fe2+ and Fe3+ are equal. Although br & bf are different, e

power zero voltage will give me 1 in both cases. Therefore net current becomes zero in this case

which also means I cannot write kf0 and kr0 as independent. 

When Edc is 0, the net current has to be 0. That is how we want to choose the reference for DC.

So the current which passes through 0 is called open circuit potential and the DC potential should

be written with respect to that potential not with respect to reference electrode, because if you

change the reference electrode, the potential will change.  

(Refer Slide Time: 11:21)



Now I want to apply AC potential and calculate the impedance. If you apply AC potential, I can

write  the  potential  as  DC+AC.  I  will  write  DC as  Edc.  I  will  write  AC component  as  the

amplitude, so in our notation Eac0 is the amplitude. 

0 sin( )dc ac dc acE E E E tE    

So I will call this curve as AC curve (refer video). Eac0 is the amplitude. Eac is a function of time.

If I write the rate constant, I can expand it as function of potential. I can expand that as DC and

AC. I can separate the DC and AC because they are in the power term and then I can expand E ac

as Eac0sine ωt.

0( ) sin( )

0 0 0
f f dc ac f dc f ac f dc f acb E b E E b E b E b E b E wt

f f f f fk k e k e k e e k e e   

 kf0 can be large or small. bfEdc can be large or small. However we are assuming Eav0 is a small

number and correspondingly bfEac0 becomes a small number. That means in the previous graph,

we can see zero voltage for DC. Consider 0.1 and 0.2 voltage in the graph. I can apply sinusoidal

voltage in those points. I am not making any assumptions regarding DC voltage. I want to make

an assumption that Eac0 is a small voltage. If I apply 5 millivolt, 10 millivolt, or even 20 millivolt,

you might get spectrum in the linear regime with reasonably good signal-to-noise ratio. If I apply

1 millivolt, for many systems, it will be in the linear regime. However we may not get a good

signal to noise ratio. 

To summarize, we found the reversible reaction with A going to B. We can write the rate constant

as a function of potential. We assume that the concentration of these 2 reactants and products do

not  change  with  time.  They are  replenished  very  quickly  as  soon as  they  are  consumed  or

produced. Diffusion is assumed to be fast and on the surface, the concentration remains the same.

We also found that if you apply DC+AC, you can split the potential into DC component and AC

component.

(Refer Slide Time: 14:23)



If you take the AC component of kf, ex, can be written as Taylor series and x here is bfEac0sine (ωt)

and sine is going to be between ±1. If bfEac0 is a small number, I can truncate it after 2nd term of

taylor series expansion. Therefore I can write that ex is approximately equal to 1+x. This is called

linearization.  Edc need  not  be  small.  It  can  be  small  or  large.  We are  neither  making  any

assumptions about Edc nor kf0. The assumption we make to bring the current expression to the

final form (refer video or slide to understand the derivation) is that Eac0bf is a relatively small

number.

0 0 0(1 sin( )) (1 )f dc f dcb E b E

f f f ac f f ack k e b E wt k e b E  ;

I can write the first part as kf at DC potential of Edc and I can write Eac0sin (ωt) as Eac. Eac is a time

dependent function and Eac0 is a constant. So I will write kf as:

(1 )f f dc f ack k b E ; and kr as:

(1 )r r dc r ack k b E ;

It means if I apply a DC potential, kf will have a value accordingly. If I change it a little (up and

down as shown in video), kf is expected to change only a little and that can be linearized. If I

change the potential a lot, this relationship will not be linear. So kf as a function of Edc is actually

a curve. It is an exponential curve. At a small variation, I can say it has a linear relationship. So

even if I have an exponential curve, at a particular Edc, you will get a corresponding slope. In

another Edc, it  will  be having a slightly different slope. However, in small  regions where the

curve is linear, I can assume it to have a linear relationship. All of them will not have the same

slope, but I can approximate at each DC with some slope. If I choose a larger region, it means I



am assuming Eac0 as a large value and the approximation will be a poor. When it is small value,

the approximation holds good. So I am making it piecewise linear. If I choose the pieces to be

small pieces, it is good. If I choose them to be large ones, it would not be good.

(Refer Slide Time: 17:08)

Now I can write the rate. 

2 3
0 0[ ] [ ]f dc r dc
b E b E

f rrate k e Fe k e Fe  

The above relation is valid at DC condition and when I do not have any AC component. If I have

AC, the current is Faradaic constant multiplied by the rate because net rate tells us the number of

electrons produced by this reaction. So this is approximately equal to:

2 3
r dc( (1 )[ ] k (1 )[ ])F f dc f ac r aci F rate F k b E Fe b E Fe 

     ;

When it is in DC condition, I can use the first equation. When it is in AC condition, I should use

Eac0 sine (ωt). As I can use the approximation with the assumption that Eac0 is small, I can say

approximately that the net current at AC condition has components kfFe2 and krFe3. 

Now consider the DC current. DC current is easy to calculate and it is a simplified version.

2 3( [ ] [ ])F dc f dc r dci F k Fe k Fe 
   

When I use AC along with DC, I will get a current. I can write it as Idc+ Iac. So when I apply only

DC potential, I will get a DC current. If I superimpose AC potential, the current will also start



moving up and down. Assume I give DC potential, the net current I get is i (refer plot in the

video). The x-axis is time and up to this time I am giving DC, I will get DC current here. So this

is not 0, 0 may be here. This is some value and this is another value. Here I start giving AC

potential on top of DC. Then I will start getting AC current. There is going to be a transient.

From here to here I am going to skip it. It is going to look like this (refer video). So the net

current in this case is Idc+Iac. So DC part is going to be 
21fdcFk Fe   and 31rdcFk Fe    because

that is going to be a constant. AC part is going to be the remaining part. 

2 3
f(b [ ] [ ])F ac f dc r dc aci F k Fe b Fe E 

     (Refer video for better understanding). So net current

can be split it into AC and DC components. 

The impedance that we measure using the experimental setup is differential impedance. I give a

small sinusoidal and it will give a resulting current and we can find out the sinusoidal oscillation

there.  I  am not  looking at  E/i.  I  am looking at  Eac/iac,  which means  I  should get  rid of DC

components. If I take Eac divided by iac here, I will get

2 3
f

1

(b [ ] [ ])
ac

F ac f dc r dc

E

i F k Fe b Fe 
  




So for this reaction, we can calculate the impedance coming from this reaction. In order to do

that, we need to calculate Eac/iac. Eac is what we apply, Iac is coming from the reaction rate. To

calculate  iac we need to  calculate  the reaction  rate  and you  need the rate  constant.  The rate

constant  depends  on  potential.  So  the  rate  constant  changes  with  Eac.  And  it  is  actually

exponentially related to Eac. We are just truncating it saying E power x can be approximated as

1+x.  With  that  it  is  easy to  get  the  analytical  expression.  Now this  Eac/iF is  called  Faradaic

impedance as it is obtained from Faradaic current. This does not depend on ω as there is no ω in

this.  This  is  basically  a  simple  resistor.  If  I  draw current  DC current  as  a  function  of  DC

potential, it goes like this (refer video). If this is my Edc, I get a current here. It will actually go

via zero. This slope gives me di/dE. Inverse of the slope is going to be dE/di and that will give

me a constant value. That resistance is going to be the Faradaic impedance for this particular

reaction. That is the resistance at 0 frequency, infinite frequency, any intermediate frequency. If I

keep the DC potential here, this is going to have a different slope. I will get a different value

because Kfdc will be different and bf is a constant. We are assuming that we are using the same



solution  for  Fe2+ and Fe3+.  So that  is  also going to  be  a  constant.  Kfdc depends on Edc.  If  I

superimpose that at 1 potential,  I  am going to get 1 impedance.  If I superimpose at another

potential, I will get a different impedance. 

(Refer Slide Time: 23:08)

All the data in general can be modeled using this circuit (refer video) where R1 is the solution

resistance, this is the double layer capacitance (Cdl). This is one resistance (parallel to Cdl) which

depends  only  on  Edc and  assuming  solution  concentrations  are  remaining  the  same  and  the

electrode is the same. Z Faraday will not depend; i will depend. In this particular example iac is

related to Eac by:

ac
ac

F

E
i

Z


 This is proportional to Eac which means Z is a constant and this is correct when we use small

amplitude perturbation in. That is one. Second, for this reaction, when you have more complex

reaction, it would not be simplified like a resistor. You will have much more complex patterns

there. Assume I increase the sinusoidal perturbation, which means I have 1 DC voltage, say 0.1

voltage with respect to OCP (open circuit potential). It has a non-zero DC current. I applied 5

millivolt,  I will get an impedance spectrum. If I apply 10 millivolt,  I will probably get same

impedance spectrum. If I apply 20 millivolts, it may deviate a little. If I apply 100 millivolts, it

will change, that means the approximations which we use there are no longer valid. If I use a

large amplitude perturbation, I cannot make the approximation that ex is 1+x. So if I use large



amplitude perturbation, you have to solve the actual equation that is going to be valid even for

small amplitude, and it is harder. So we most of the time want to say that perturbation is small. I

can linearize and solve and get analytical expressions. In this case, the analytical expression is at

a  given  DC,  this  impedance  can  be  represented  by  a  resistor. At  a  different  DC,  it  can  be

represented by another resistor, still a constant value for that DC. So the impedance spectrum

that I get out of this will look like this (refer video). Solution resistance is marked here, r2 here

and Cdl will give me the high frequency loop here. As it is a simple resistor whether I go to zero

frequency or infinite frequency or anything in between, I get the same resistance.  Here it so

happens. Rt and Rp will have the same value. Capacitor has 1/jωCdl and you can get the total

impedance by adding the capacitor and R2, assuming solution resistance is zero. So I can write an

expression for total  impedance.  If I am using a programming language,  I will write separate

expressions  for  impedance  part  for  the  Faradaic  process.  I  have  separate  expression  for  the

capacitor. I can add them in the correct way.

(Refer Slide Time: 26:00)

At different Edcs, at 0 voltage, I get one semicircle, 50 millivolts of DC, I get another semicircle,

100 millivolts of DC, I get another semicircle (refer slide or video). This is what would happen if

our solution resistance is 0, if our perturbation amplitude is small and if diffusion is not playing a

significant role. DC current will look like this (refer video). This is what we have calculated

previously. I also want to show you what happens when you actually do this process.



If I take ferro/ferri solution and measure the current as a function of potential, it does not go

exponentially. It goes up and then saturates (refer the next figure in video). Here in the coloured

lines,one of them is experimental and another is model data. Later we will see how to calculate it

in the presence of diffusion. Different RPM will have different current levels. So even if you go

to high RPM, it  does not  go as exponential,  1600 is  actually  moderate.  You can go to  few

thousands. It will still settle, because diffusion will become rate limiting. In ferro/ferri reaction,

even  if  you  go  to  5000,  6000  RPM,  diffusion  will  not  be  so  fast  that  you  can  ignore  the

contribution from mass transfer. You can ignore the resistance from mass transfer. So if I take the

impedance of this, this is how it looks (refer video).

(Refer Slide Time: 27:25)

The first semicircle is actually coming from the reaction. Second is not a semicircle, it looks like

a distorted semicircle. It is not a distorted semicircle either. It is almost like a 45o line here with a

curve here and we will give a proper expression for this which is possible to derive. So mass

transfer is present. We make the assumption that mass transfer resistance is not that significant,

so that we can derive this equation. When mass transfer is coupled with this, it is not that easy.

For simple reaction, you can derive. For anything more complex, it is very difficult. 

(Refer Slide Time: 28:05)



In  the  previous  session,  we have  seen  some  examples  with  EEC and  how we can  use  the

polarization resistance and charge transfer resistance to guess initial  values and we have also

seen the derivation of impedance equation and current potential equation for a simple reaction.

Now I want to show you the derivation of impedance for a reaction with 2 steps.

(Refer Slide Time: 28:30)

To summarize the previous topics;  we have seen the reaction A going to B with an electron

transfer.  If  you  calculate  the  impedance  at  various  DC potentials,  we saw that  we will  get

semicircles  with  different  diameters.  The calculations  also  showed that,  if  you  calculate  the

current versus potential, it is going to go as exponential when you are far away from 0. When

you are at 0 potential or at the equilibrium potential, it is going to be 0. This is what you predict



if diffusion is not rate limiting and only kinetics are rate limiting and we also saw examples

where we showed that, when you measure at different RPM, current will increase with potential

and then saturate due to diffusion. Similarly, if you go to the negative potential,  current will

decrease and then saturate. Likewise, if you measure the impedance, it is going to show you 1

semicircle corresponding to the charge transfer process that is corresponding to the kinetics. And

then another loop which is not really semicircle that comes from diffusion. So diffusion is not

really completely neglected.  It cannot be neglected when you are actually measuring for this

particular reaction. So whatever we are calculated or the equations we have derived or assuming

the diffusion is very fast, we are going to do few more examples where diffusion is considered to

be very fast and therefore mass transfer resistance is negligible.


