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Now there are few things which we want to check, one linearity meaning the response can be

represented by a linear system. Another term is  stability;  stability here means we apply a

perturbation, sinusoidal wave, we stop that, wait for some time the system should come back

to the original state, that is an assumption that, it will come back. So we get EIS data, we

assume that, these assumptions are valid, and then we analyze the data.

One is called causality, causal, means we apply sinusoidal wave, we get a sinusoidal current,

hopefully a sinusoidal current, we get a response, we analyze it thinking that the resulting

current is due to the application of sinusoidal wave from our side, it is caused by what we do.

It is not coming because of something else. In other words, it is not necessarily noise, noise

level is low.

In technical term there is another way of thinking, they would say causality here means the

response cannot come before the application of the perturbation, mean if I apply sinusoidal

voltage, now I should not get the current before this, but in practical terms we are not going



to measure before this. We are going to apply sinusoidal potential, get the response and hope

that whatever response we get is because of the application of sinusoidal potential.

And one way to check is to do the experiment repeatedly and check whether you should get

same  data.  Every  time  if  it  changes,  something  is  not  correct.  Repeat  experiments  by

dismantling the setup, arranging again and redo the experiment, and if you get the same data,

it is repeatable. There will be some difference that gives you an idea of the noise level, in data

acquisition.

I want to know check whether the data is linear. I can apply 10 mV, I can apply 20 mV , 5

mV, and see whether the response is same, within the noise level. If it is the same it is within

the linear limit. If 5mV and 10mV perturbations are more or less matching, but 10 (mV) and

20 (mV) are different, try 20 (mV) and 30 (mV), they are different, you will say up to 10 mV

it is linear, beyond this I cannot neglect the nonlinear effects.

All this means, you will need to spend substantial amount of time to get one set of data which

you trust. It takes certain number of hours to prepare the setup, may be days depending on

what you are testing. It will take at least few minutes maybe 10 minutes, maybe 20 minutes to

run one EIS. So when I say repeat the experiments, nobody wants to do it, but if you want

trust the data you have to do that.

If I say vary the perturbation, at least you should try 2 values, preferably many, if you want to

study and say this is the linear regime you have to do it at multiple Eac0 and then see where

this is more or less the same. So if I try, I will just make up this, for 10 mV perturbation and I

get data like this. If I try 10 mV perturbation, I will get data more or less like this. I try one

more time, I will get like this. Then I say it is repeatable and when it is repeatable I should

worry about taking 5 mV data, impedance looks like this. I will say it is in the linear regime,

20 mV, it looks like this I will say it is in the nonlinear regime. If at 10 mV itself I get data

like this, I have to figure out how to reduce the deviations here. Then I cannot say that a

perturbation of 20 mV also look like this because the noise level is too much.

Now we have to check the another criteria,  stability; let us say you take the experimental

setup; you do one experiment you get data like this. At the end of it, continue with one more

experiment, same parameter set. If it  gives you more or less like this, you are good. If it



becomes (noisy) like this that means during this experiment system has changed to some

level, so it has not been stable, at the end of this perturbation it has not come back to the

original state. I have applied many sinusoidal sequences, but it has not come back to the

original state, if it has come back to the original state within the noise level, I should get the

same set of data. So this is one way to check whether the data, experimental data has come

from a system which follows linearity stability and causal constrains.

It is also possible to validate the impedance data using a transform called Kramers Kronig

Transform.  This  is  somewhat  special  to  impedance  data  among  the  electrochemical

techniques, You take cyclic voltammetry data, you take chronoamperometry data and it looks

good, you feel it is correct, it looks noisy you feel something is wrong. It looks weird you do

not know whether it is good or bad, meaning,     cyclic voltammetry data if you get something

like this probably it is correct. If you get something like this, I think it is wrong, (or) I do not

know. If I get something like this, I know it is noisy.
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So as a cartoon of course this is shown to illustrate that people are relying more and more on

computers and calculators, but here if somebody gives you a number if it is possible to check

it, (and) you want to check it (before using the data).
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So  There is an equation it is written for impedance here. If a system is linear, causal and

stable, and it gives a couple response for various frequencies. You can relate the real part and

imaginary part using this set of equations. These are purely mathematical formulations, it is

applicable for impedance, it is applicable for admittance, it is applicable for optical data, in

optics you have what is called  refractive index. Refractive index normally you would have

seen water has a refractive index of one point something. It actually has two components, one

is called real and another is called imaginary. Real component tells you the deviation, when

you send the light at a particular angle it moves in another angle etc. Imaginary component is

related  to  how  much  is  absorbed  by  the  material  and  that  depends  on  the  wavelength,

depending on the wavelength the refractive index which has a real and imaginary part will

vary. Wavelength is another way of saying frequency. Now I can replace this with refractive

index real part and imaginary part. This equations are valid, these are not derived specifically

for impedance. These are just mathematical relationship for a function which has a coupled

output, (that is) two outputs.

As long as  it  follows these  constraints,  I  want  you  to note  the  following.  ω here is  the

frequency, 2πf. Real value of the impedance at infinite frequency. In complex plane plot this

is the first starting point, this is the high frequency data, that cannot be obtained only from

imaginary  data,  that  has  to  be  given  in  addition  to  giving  me  the  imaginary  data  and

frequency.

If you give that then the remaining all the real values, I can predict. If I want to predict the

imaginary values, if you give me all the real values I can give, as an example, this relates real



and imaginary there are  equations  which relate  the phase and magnitude.  You can go to

reference books and you can get those and these are pure mathematical relationship. Pure

mathematical relationship meaning when you derive these equations you do not have to say

anything about impedance. 

So this is an example, this is simulated data, I have taken it 1 mHz onwards, because of space

I have just removed these data. Let us pretend that there is data from 5 mHz etc, few Hz, few

hundreds of Hz, few kHz and then it goes up to 100 kHz, and we have saved the data real and

imaginary part. So actually -imaginary so these values are positive. So this would actually

look like a semicircle if I plot -imaginary versus real.

I can also plot this in Bode plot or any format. I can calculate the |Z| and the phase value.

Now let pretend that you have this data and somehow you lost these 2 columns. If you have

deleted, before you saved it and then you realized you lost it, and in fact we will worry about

the Z table later, we would not look at it now, we will just say we lost the imaginary part, I

want to get the real part.

If this data set has come from a system which satisfies this relationship, then you can use this

transformation  and  get  the  imaginary  values.  Now  you  cannot  just  tell  me  I  know  the

frequency and I know the real value, tell me the imaginary value. You need to give the full

array, and in theory you have to give from 0 to ∞. In practice you will get data from low

value to high value of frequency.

Now here ω is the variable here, x is the dummy variable. If you do the integration with the

lower and upper limit x will not come out of this equation. You will get this integration, you

have an analytical expression, you may try doing this, numerically you can evaluate this. So

to calculate Z real at one frequency, I have to know the Z real at infinite frequency, I need to

know this value, in addition, I need to know all the imaginary values or skip this part now. To

calculate the imaginary value at a frequency, any frequency, I need to know the real value of

Z at all frequencies and the real value of Z at that particular frequency. Basically I need to

know all this data and exist a dummy variable here which basically is a frequency here. If I

do the integration, I will get all the imaginary value.



So I will have to take this value substitute, ω = 2πf, here also ω = 2πf and f = 1e-3, f = 2e-3

and so on. Each time I had to do integration,  so if I want for 1,000 points, I need to do

thousand times this integration. If I do that I will get set of values for Z imag. Now we are not

going to lose data, hopefully not. We get data with frequency real and imaginary. What we do

is to get the set of values, predicted values, we call transformed values. So I will use all the

imaginary data and get the real values. I will use all the real data and get the imaginary value,

and then compare with the data that is available. If they match then I can claim most likely

this data set has come from a system which does not violate linear, causal and stable criteria

most  likely,  because  this  Kramers  Kronig  Transform  is  not  a  necessary  and  sufficient

condition.

In mathematics you will say if and only if, so in the Kramers Kronig Transform if the system

is linear, causal and stable, it will definitely satisfy this, but if the relationship is satisfied I

hope this is true, but it may or may not be true. It can come from a system which is not linear.

In other words, if it does not satisfy Kramers Kronig Transform I know there is a problem. If

it satisfies KKT most likely there is no problem. But I cannot guarantee it, so the best we can

do is to check whether it satisfies this relationship or not. If it does not satisfy we recognize

there is a problem, if it satisfies we hope everything is okay, but this self-consistency check is

available only when you have the real and imaginary part or the phase and magnitude as a

function  of  frequency. Now how do we implement  it,  how do you  actually  go  about  it.

Because I do not have data from 0 to ∞ and I can nicely show many frequencies here, but in

real life it will take very long time to get lot of data.
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Now, this is Ross MacDonald senior professor of North Carolina, I think. So if you do not

really analyze the data properly what is the point of taking the data and as a corollary, Prof.

Boukamp,  if  you  do not  have  a  validated  data  what  is  the  point  of  analyzing  it?  So In

impedance there is a possibility for us to validate it.  First thing you should do when you

acquire data is to subject it to KKT.

When it is the data is KKT compliant, then you analyze the data subsequently. So Boukamp

is in University of Twente, I think Netherland and is given a program which you can use to

verify whether the data is compatible, (that is) KKT compatible.

(Refer Slide Time: 13:23)

So Here I take an example circuit this is consisting of passive elements, meaning it does not

have any triode or diode or transistor, it has simple resistor and capacitor. A spectrum that

comes from this will definitely be compliant, KKT compliant that means it is coming from a

linear, causal, stable system there is no noise introduced here, I am simulating the data and if

I simulate the data, in the complex plane plot it will look like a semicircle starting at 20 Ω

ending at 120 Ω.

We have seen this before, now if I do the transform and plot it in the body format, so I plot

magnitude and phase as a function of frequency. The original data is shown as points here,

and the transform data is shown as line here and as expected, they are matching. So I want to

show you; if there is a software,  you can contact the faculty and get this from professor

MacDonald in University of Berkeley. Double-click the software you will get something like

this, this is the interface.
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Data (file has to be inserted), without any header you can have the data showing frequency,

real and imaginary. In addition, you can also calculate, the CAL is the calculated value since I

have already done this, it fills with this, otherwise you will have only frequency, real and

imaginary parts of impedance. The EX stands for experimental data and these two will be

zeros. The way it is implemented after loading the data, you have to say interpolate. And you

can say calculate real which means calculate the real value from the imaginary values and do

you want to integrate only within the limits, integrate from 0 to ∞ what is required, but we

have data from mHz to maybe multiple kHz. So I can do two things; one I can say integrate

only  within  this  and  hope  everything  is  ok  or  use  some  extrapolation,  whenever  you

extrapolate there is a possibility that it will not work correctly. But the at the high and low

frequency is a possibility. We do not need to do, this is the simulated data with good coverage

of the frequencies, so can press yes.
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So this plot the values, the segment here, basically what it does is, you want to do integration,

it is a numerical integration. You can do numerical integration and in real life you will have

data points with some noise. So you can say divide this into multiple segments, within each

segment fit it to a quadratic equation or fit it to a straight line, fit it to a cubic equation and

then integrate that function, that is going to be better  than trying to integrate through the

numerical  method with the points.  If  the points  are  very finely spaced then you can use

trapezoidal integration, Simpson rule and get good data. If the points have noisy, fitting it to a

function locally, piecewise fitting it to a function and then integrating those is a better choice.

So in this case I am going to say 20 intervals with the polynomial order, if it is 1 it means it is

a straight line segment, if it is 2 it is going to be a quadratic equation. And this works for

fixed segment, it does not work for variable segments. In practice, ideally if I have many data

points in some frequency range and fewer data points in some frequency range maybe I got

data, they are noisy, I threw them away, remaining data I want to analyse, then I might want

to use different segment lengths, but it does not work here for whatever reasons, so you stick

to fixed segment size and instead of saying perform KKT, the command here is interpolate.

The blue line is the line, it is fitting and that is what it is going to use for integration which

looks fair enough. If you are satisfied at this time, it will be populated with all this data. This

is  the  transform data  and  I  can  also  look  at  that,  saying  I  can  plot  experimental  versus

calculated, (which is clearly) no(t) good. I had taken a data which does not actually satisfy

KKT. I have not taken the semicircle here, I taken a slightly different, now I can save this.



If I save it, it is going to slightly alter the format, but it will save it in 5 columns, you can

copy it  and paste it  into for example Excel and you will  get four columns with nonzero

values, fifth column will be zero. I can say I want to calculate the imaginary and go through

the  same  process,  fixed  segment  size,  give  values  20  (and)  2  (in  respective  columns),

interpolate and claim. Now you see the first, second, third columns remain as they are.

Fourth column has become zeros, the previously calculated values have gone. Fifth column is

populated now. You should save this in a different file, and then use Excel or some other

software to get all the columns. That is how it is implemented, it is a free software, so we

better take,  whatever is available,  but you should use KKT to verify and this is one free

software, free meaning I had requested by email I think if you request for academic purpose

you would get it for free and you can use it.

So using this software I have generated these plots. In this example I have simulated data

therefore I have got good data from very low to very high frequency.
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So let us pretend that we did experiment and due to some reason below certain frequency, I

could not take data, it is very noisy or I had to finish the experiment and this is all I have.

Now I want to use this KKT and verify. So instead of saying 0 to ∞ Hz, I am saying 1 mHz to

100 kHz. Now I will  say I  have data only from 10 Hz to 100 kHz, that  is  not going to

transform correctly.



Even if I use extrapolation sometimes it will work sometimes it will not work and this is not

transforming correctly not because the system is having any problem not because system is

not linear or causal or stable,  because I am approximating 0 to ∞ with a much lower or

shorter truncated value, and that is not a good approximation. So if we transform the data and

it does not match, first thing you need to ask is, am I giving it in a wide enough range, am I

approximating the integral correctly. If I am approximating the integral correctly and then it

does not match I have a problem. If I am not approximating the integral correctly I need to

find some other way of handling this, that is one aspect. It is possible to use extrapolation in

some cases, it  will work and tell  you it is compliant,  some cases it  will still  say it is no

compliant and you do not know whether it is problem with extrapolation or problem with the

data.
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This is actually a photograph of Prof. MacDonald who has been doing this for like many

years or you can say few decades. So he has taken a data, iron dissolving sulfuric acid and

while taking the data they have superimposed a potential ramp meaning the DC potential is

supposed to be here and they are supposed to apply a AC potential here. Deliberately they

have  applied  potential,  I  do  not  remember  whether  it  is  going  up  or  down.  But  the

sinusoidally superimposed along with the ramp that means at the end of this when you stop

this data acquisition potential is not here, it is at some other value and it has been changing

throughout this experiment. So artificially he has changed this to create a response from a

system that is not stable, and if you take this data and do the transformation you will find

there is a clear variation. And if you take the data without the ramp, stable system, you will

see that, it matches well. I have not shown you the data here, but if we take a data for the



same system without this potential ramp it will match well, with the potential ramp it does

not  match  well.  So you  get  a  data  like  this  you  do KK transform,  you  know there is  a

problem, it would not tell you the problem is in stability. It will tell you there is a problem, do

not analyze the data thinking it is coming from a linear causal stable system.
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We had done some simulations where initially the potential is at some location. After some

time, it is gone up quickly and then stabilized here or gone down quickly and stabilized here,

that also is likely to happen in real life, open circuit potential may drift over time, unstabilize

and  we  have  modeled  this  using  an  exponential  function.  Normally  we  will  expect  a

semicircle if there is no stability issue. Because there is a stability issue, the stable one will

give you a semicircle, the unstable one will give you a semicircle with a tail. Also notice that

this scales are equal, they have to be equal, only then you can clearly see, otherwise if I

truncate this, or push this it may even appear like this which is caused by diffusion. We will

come to that later, but this is just to illustrate that you have to look at the scales and you have

to  draw the  scales  correctly.  And if  I  do  transformation,  original  here  is  the  data  that  I

simulated, this is the transformed data and you can tell there is a problem. This is just again to

illustrate that you should use KKT and of course in these examples we are simulating the data

so we can take at  any frequency, we can say take,  meaning we can simulate  that at  any

frequency. We can say go to very low frequency, very high frequency without any problem.
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 (We) will continue tomorrow. Basically we can do this and show that in many cases you will

find or you will capture the problem in the beginning and whenever you analyze impedance

data first thing you need to show is I have performed KKT or equivalent test, it is satisfactory

and therefore analyzing the data, we will stop here today.


