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Welcome back to the lectures in Chemistry and the Structure of Atomic and the topic of

Atomic Structure and Chemical Bonding ok. My name is Mangala Sunder; and I am a in

the  department  of  Chemistry,  Indian  Institute  of  Technology,  Madras.  My  email

addresses are given here for reference, and for contact. The lecture, now we will continue

from  the  last  one  on  the  variational  method,  but  I  shall  discuss  a  little  bit  on  the

variational  principle  or  variational  minimization  of  the  energy  using  the  method  of

Lagrange a multipliers in between the lecture.



(Refer Slide Time: 01:05)

Now, recall that we were trying to solve the Schrodinger equation H psi is equal to E psi,

when we do not know all the eigen functions even some. Therefore, we could use an

arbitrary basis function set phi i such that the basis functions are preferably orthogonal,

and this is an orthonormal set.

And if the basis functions are not orthogonal, then we use the overlap between them call

it as S i j not equal to 0. This is delta j k means j equal to k, j not equal to k, this is 0 0 - j

not equal to k; and 1- j equal to k right. If the functions are orthogonal, we can define an

overlap matrix with normalization as a possibility, so that S i i they can always set into 1

by redefining the wave functions. 
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So, this was mentioned in the last lecture, but let us see it in the from the variational

theorem  using  what  is  known  as  the  method  of  Lagrange  multipliers  Lagrange

multipliers ok. Now, if we write the wave function in terms of linear coefficients C i phi

i, we want to write this you can always write this as a kit. And we want to obtain the Ci’s

such that get C i’s such that the energy is a minimum the average value for the energy.

The average value for the energy in the state is if you write the integral formula, it will

be psi H psi. And using the expansion of the wave function in terms of all the basis sets i

equal to 1 to n if you do that, you get the sum i j phi i H phi j, you get C i star and C j,

because, this is of course, C i star phi i, this is C j phi j and Hamiltonians in is and which

between the two. And you write to this usually as the Hamiltonian matrix element H i j.

And therefore, this expression for the energy is expressed given as i j both giving going

from 1 to n. You have H i j C i star C j ok.
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First let us make some simple assumptions, which are generally valid for the problems

we deal with that we will have real coefficients. And we will also have H i j all elements

of the Hamiltonian real ok. Therefore, H i j due to the Hermiticity property it will be H j i

ok. And the condition for the wave function psi to be normalized is the sum over i with 1

to n. The absolute values of C i square of course, we are now using real values, therefore

C i square is equal to 1 ok. This is the constraint in the choice of the C i’s here.

Now, if you look at it carefully there are n coefficients, which are not determined, and

which we want to know. Therefore, if you think that all the n coefficients are independent

of each other, and we want to minimize the energy as a function of these n coefficients.

We have to remember that all these coefficients are connected by this relation that the

sum of squares of these coefficients is equal to 1. Therefore, the expansion psi is equal to

i 1 to n C i phi i does not have n independent coefficients, but has only N minus 1 of

them because of the constraint this is called the constraint that the sum of squares of the

coefficient is equal to 1. 
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For a minimization of such problems of the energy as a function of the C 1, C 2, the C n

what you want to do is to write dou E dou C i is equal to 0. Therefore, to do this with the

constraint that C i square is equal to 1. The method of Lagrange multiplier defines, what

is known as and L function Lagrange function L, which is the energy itself psi H psi, but

which includes the constraints namely that E times psi psi minus 1 ok.

Therefore, what you have is the matrix the Hamiltonian with the E multiplied by the

constraint that psi psi is equal to 1, therefore technically this is 0. But, remember now if

you write this in terms of coefficients, you will see that this is i j C i C j H i j minus E

times sum over i C i square minus 1 this is called the L function. And the minimization

for the energy is done by taking the dou L by dou C i to 0 for all C i i is equal to 1, 2, 3

up to n. This is called the method of Lagrange multipliers Lagrange multipliers.



(Refer Slide Time: 08:10)

Therefore,  let  us  do the  following.  If  L is  as  we have,  you can  just  go back to  the

previous page L is given by this. Therefore, if you take the derivative of L with respect to

C i, you will see that there is a C j H i j, but it will be twice and this is 2 c i E. Therefore,

what you would get is when you take the derivative of this expression, you will get this

forms j C j H i j minus E c i that should be 0, this is dou L by dou C i ok.

And this  is  valid  for  i  is  equal  to  1,  2,  3,  4.  So,  you  have  essentially  the  kind  of

expressions namely sum over j C j H 1 j minus E C 1 is equal to 0, this is for i equal to 1.

And for i equal to 2, you have C j H 2 j minus E C 2 is equal to 0, and likewise you will

have n equations namely j C j H n j minus E C n is equal to 0. Now, if you look at this

equation carefully, see this is the same thing as the matrix eigenvalue equation we wrote

down in the previous lecture on variational method, because what you have is essentially

C 1 H 1 1 minus E plus C 2 H 1 2 plus C 3 H 1 3 plus C 4 H 1 4 and so on. This is 0

right.
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And for it is easy to write this down as C 1, this one H 1 1 minus E H 1 2, H 1 3, H 1 n;

H 2 1 or H 1 2 because they are both equal H 2 2 minus E H 2 3 H 2 4 all the way have

to H 2 n. You can see that this multiplied by C 1, C 2, C 3 up to C n is equal to 0, you can

write this down right all equations. This is exactly what we had earlier. Therefore, the

method of Lagrange multipliers is give it I mean it gives you identical results in within

this limitation of a real basis functions, and real coefficients, and the Hamiltonian matrix

elements being real, but this can be extended to complex quantities, I do not think it is

the problem the Hamiltonian is a Hermitian matrix.

You only have to make sure that you take the right derivatives, but what is important is

that this has already been identified. And the method of the multipliers gives you the

same  namely  the  determinant  of  this  should  be  0.  And  therefore,  you  will  have  n

eigenvalues and the lowest of the eigenvalues for various values of C there is what is

called the variationally minimized energy. The only change is that if the basis functions

are chosen, as you see here which was the basis functions are orthonormal (Refer Time:

11:31) where I have written that down, let me see where I have it ok.
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The basis functions phi i phi j where assumed to be delta i j and if you did not have that

condition, then the energy expression that you have. The average value for the energy

here, the average value for the energy will also contain an S i j sorry this is H i j. The

eigenvalue expression E will contain here this one this will also contain an s i j because

the coefficients and a corresponding C j. Therefore it will not be limited to one see’s, but

it will be there will be many. What is the form of that equation if the eigen function the

basis functions are not orthogonal, but they have an overlap between them. 
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Then the Hamiltonian that we have to write will be H 11 minus E S 1 1 would be 1, but

then you will have H 1 2 minus E S 1 2, H 1 3 minus E S 1 3 all the way up to H 1 1

minus E S 1 n. And likewise, you will have H 1 2 minus E S 1 2, because the overlaps

are also symmetric H 2 2 minus E S 2 2 H 2 3 minus E S 2 3 and so on, H 2 n minus E S

2 n, all of this multiplied by C 1, C 2, C 3, up to C n that would be 0 this goes all the way

down to the nth element ok. 

So, either we use this if we are able to choose the basis functions to be orthogonal, but if

the  basis  functions  are  not  orthogonal.  And  they  have  some  numerical  reasons  for

choosing them, that it is possible to calculate. All these quantities H 1 2, H 1 3 all these

things  much  more  efficiently  using  functions,  which  are  not  numerical  numerically,

which are not orthogonal right. If that is the case, then you have actually calculate the

overlap integrals between the basis functions. And you ensure that the Hamiltonian that

is diagonalized is this Hamiltonian what you see here is this Hamiltonian equation ok,

(Refer Time: 14:17) the whole of it.

The choice of Gaussian functions in the numerical calculations of the entire quantum

chemical, this I mean the quantum chemistry, the entire quantum chemistry; the use of

Gaussian functions is precisely for this reason that they may not have a zero overlap that

is they may not be orthogonal. It is possible to bring some orthogonal functions into

them, but if they are not orthogonal, it is still possible for us to use them by ensuring that

we  calculate  the  overlaps  appropriately,  and  then  numerically  diagonalize  the  whole

process.

Now, for real problems the n has to be a finite number, because computers cannot take n

to be infinite. Therefore, the choice of basis functions is very very carefully made, and

the n which is the total number of basis functions that one has to choose is also control,

so that  you have numerical  efficiency in using computer  time in using the computer

memory, and in getting the right result, which is close to what you think should be the

experimental result, how closely you can align yourself with the experimental results. All

these things are important factors, but the variational principle is fundamentally to all of

that ok.
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Now, just two simple examples of this process and one example is already something

that you have done. The harmonic oscillator, example you have already done in the last

class or the last lecture, please recall that we chose an arbitrary function for the wave

function psi to be an exponential minus lambda x square. And we found out that for the

Hamiltonian minus H bar square by 2 m d square by dx square plus half k x square. We

found out that lambda turned out to be square root of 1 by 2 square root of k m by h bar

square ok, and this 1 by 2, which is usually written as alpha. And therefore, you see psi is

e to the minus alpha x square by 2. We have done this we have verified this for the

variation method. 

Today, we shall also look at this time, we shall also look at one more simple problem

namely  a  particle  in  the box.  If  we have  the  wave function  psi  of  x,  which merely

satisfies the boundary conditions that it is a constant times x times L minus x, so that the

wave function is 0 at both the boundaries. But, otherwise it is an arbitrary wave function

what  will  be  the  average  value  for  the  energy  using  this  wave  function,  variational

theorem tells you that this will be greater than or equal to E 1. But in this case of course,

it  is  quite  clear  that  this  is  not  the eigen function,  therefore we will  see that  this  is

actually greater than the E 1, which the exact solution for the particle in the box gives

you as h square by 8 m L square that L is the box length. Let us see that very quickly. 
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The average value for E is to be obtained with C square the integral x into L minus x

minus h bar square by 2 m d square by d x square times x into L minus x dx, but since

the wave function is not normalized and these are the C square, we should have it as the

integral C square times the integral x square into L minus x whole square. It is C square

times the integral x square into L minus x square 0 to L dx ok.

Now, this is such an elementary calculation if you have done it several times, therefore

let me write down the final answer for this the energy. The C is given as root 30 by L

raise to 5, you have already calculated this in some of the examples. The E is calculated

as 5 h square the average value 5 h square by 4 pi square m L square. So, if you have to

write this as h square by m L square, whatever the number you get here should be greater

than 1 by 8 1 by 8 is 0.125.

If you calculate this number 5 by 4 pi square, you get approximately 0.127. Therefore,

you see that the average value E is greater than the exact eigenvalue E 1, which is h

square by 8 m L square. So, this is a simple example of a variational method. When you

have an arbitrary wave function, what you do is you calculate the energy; of course here

we did not have any parameter. 

Therefore, there was no requirement for the parameter to be minimized, whatever we got

was essentially the average value as defined in quantum mechanics. So, it does not seem

to be like anything to do variation what kind of variation we did or what we varied it



does not seem to be coming out. But, in the case of harmonic oscillator, of course you

saw that lambda itself was the parameter.

And therefore, we minimize to the energy calculation as a function the derivative of that

energy with respect to lambda was said to 0. And then, we try to obtain the minimum and

predict that that is the energy that we should get from variation theorem ok. There are

quite a few examples, what I would do is in an assignment or in the in a handout. I

should gives you a few more problems directly using the variational method, but let me

give you one slightly more complicated example. 
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Suppose, the wave function for the particle in a one-dimensional box is given by two

constants C 1 whose function is x into L minus x, and another one C 2 whose function is

x square into L minus x square whole square; C 1 and C 2 or arbitrary constants. And the

functions x into L minus x, and x square into L minus x whole square both satisfy the

particle in the boundary particle in the box boundary condition namely psi of 0 is 0, psi

of L is 0.

But, remember these two functions are not orthogonal to each other, because if you take

the orthogonality property call this as phi 1, and you call this as phi 2. Phi 1 star phi 2 d

tau dx 0 to L phi 1 phi 2 dx that is not 0 ok, it is 0 to L x cube into L minus x whole cube

dx ok. Therefore, these wave functions are not orthogonal.



Now, if we calculate the energy of the particle in a box as a function of this psi you will

get the following namely C 1 square the integral x into L minus x times the Hamiltonian

operator times x into L minus x dx divided by we will we will do the division later sorry

this integral minus x plus C 2 square this is 0 to L 0 to L x square into L minus x whole

square H x square into L minus x whole square dx, this is the second term. This is C 2

square.
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And then, you have C 1 C 2 plus C 1 C 2 the integral 0 to L x into L minus x H acting on

x square into L minus x whole square dx plus C 1 C 2 the integral 0 to L x square into L

minus x whole square with the Hamiltonian acting on x into L minus x dx. Now, you see

that the energy that you obtain is a function of the coefficients C 1 and C 2. 

So, the variational principle here is that if you want this energy to be minimum, then we

calculate dou E by dou C 1 to be 0 the cept is equal to 0. And find out the value by also

having simultaneously the second equation dou E by dou C 2 is equal to 0, because the

energy is a function of two parameters, and you have two conditions you will get a value

for C 1 and C 2 by solving this equation.  Dou C 1 and C 2 if  you substitute  in the

expression for the energy above in all these four 1, 2, 3 and 4 terms, then you get what is

called the variationally minimized energy.

This is a trivial example for which we already know the solutions exactly, but the point is

the exercise of how you should do for functions. And for systems for which if you do not



know the exact eigenvalue, the procedure is identical that is why, this matrix formulation

was done a little earlier. When we do not know the correct eigen function, we only make

a  proportion.  And  we  have  a  lot  of  coefficients,  and  we  try  to  minimize  these

coefficients.  Either the minimization or the matrix diagonalization,  they both we will

give you identical results from there we can get to the energy eigenvalue. 

So, there are many other examples, and you will see more and more; when you move on

to the next course, in quantum chemistry. And you want to compute numerically the

properties and also start using numerical routines; you will see more of this. I have not

given any mathematical  concept here,  but probably in the lecture nodes that I  might

come wide in this course, I will do a little bit of formal mathematical work.
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There are two beautiful books for those of you who are interested in looking at to the

variational method in detail ok. Let me write down those books two books for you ok.

The first one is Calculus of Variations and the author is Robert Weinstock, it is a Dover

publications book, 1974. The second book is a little more into the mathematics of it, it is

called Variational Principles in Dynamics and Quantum Theory, it is also an advanced

book. And the author is Wolfgang Yourgrau g a r e u, and Stanley Mandelstom even

known physicist, this is also a Dover book, 1979.

They are both quite advanced, but variational method is an extremely important method.

I will say much more of this in an advanced course. But, in the introductory course, I



think it is important to here to some elementary principles, but for those of you who want

follow this in more detail; these two books will provide you some of the best state of the

art variation methods used in quantum theory ok. We will continue this with to the first

lecture in the next lecture on the chemical  bonding, and there we will  start  with the

hydrogen molecule ion as the first example.

Until then, thank you very much.


