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Welcome  back  to  the  lectures  in  Chemistry  and  the  topic  of  Atomic  Structure,  and

Chemical  Bonding.  My  name  is  Mangala  Sunder,  and  I  am  in  the  Department  of

Chemistry, Indian Institute of Technology Madras, in India. And my email addresses are

given here for you to write to me on this or any other subject in related matter. This

lecture  will  provide  an  elementary  introduction  to  variational  principle  in  quantum

chemistry. And of course, I would try and make it as non-mathematical I wouldn’t do any

formal introduction to variational principle as a whole, but we will restrict to the most

basic elements that we recognize in quantum chemistry.

A very good elementary account is given in 2 books that I have mentioned here, and both

of which have influenced my own learning and applications of quantum mechanics to

chemistry.  One  is  the  book  by  D  A Mc  Quarie,  Quantum  Chemistry  and  Fleur,  I

mentioned this earlier and the other is the book by Levine, I N Levine, also on quantum

chemistry. They are both quite old, but they have very good learning materials.
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Now variational principle was introduced in quantum mechanics for energy, it is called

the energy minimization principle. First my, because that have Erwin Schrodinger, whose

equation  we  have  been  trying  to  understand  for  model  systems.  Namely,  the  time

independent equation, it says they continue say that you have been working through this

course hm.

This is one of the most significant contributions by professor Schrodinger himself on the

energy minimization principle. In a nutshell, what it says is that for any arbitrary state psi

of the system, that is may function psi, if he choose or if the system isn’t in any arbitrary

state psi, and it is not one of the Eigen states that we are trying to get by solving the

equation H psi n is equal to E n psi n. We do not know this.

Yet for any arbitrary state psi be average value energy calculated the lowest or that state

is psi star H psi d tau and the wave function is not normalized you also divided by psi

star psi d tau. We average value calculated is always higher than the exact ground state, E

is always higher than or greater than or equal to the exact ground state of the system,

which we will denote by E 1.

As long as the wave function is arbitrary, and E will become exactly E 1, provided the

wave function psi becomes the Eigenfunction psi 1, corresponding to the equation H psi

1 is equal to E 1 psi 1. That is no matter whatever you do, whatever approximation you

provide, the average value for the energy through the calculation using the Hamiltonian,

that you obtain will always be greater than the lowest exact Eigenvalue for that system.

And therefore,  this  lowest  Eigenvalue  or  what  is  called  the ground state  Eigenvalue

provides what is called the upper bound to all over calculations. We know that we are on

the higher side of the error, not on the lower side of the error. This is a principal and I

will immediately demonstrate this with a simple a statement of the Eigenfunctions and

expressing wave function as a linear combination of Eigenfunction.

So,  you  will  see  that  in  the  few minutes.  This  is  an  extremely  important  principle,

because what it says is that if you want to get the exact ground state Eigenvalue, you

have to search for the exact Eigenfunction the ground state Eigenfunction. Therefore, if

you  obtain  or  you  provide  Eigenfunction  using  some  parameter  and  the  energy  is

calculated as a function of that parameter, then you want to get the minimum for that

energy. There is a mathematical method provided by the variational principle namely



minimizing that energy as a function of the parameter. We will see these things in a right

away.
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If the energy is obtained through a function, and the parameter C 1 parameter here, but it

can be many this is the average value E. And therefore, the average value E is a function

of the parameter c; then if you minimize the average value with respect to the parameter,

and then calculate the average value.

You would see that that is the best you can get. And your idea of choosing the parameter

is  that  the  wave  function  that  you  choose,  sorry,  which  is  also  a  function  of  that

parameter hm. The wave function that you choose should be chosen in such a way that it

is closest to the possible exact Eigenfunction. I mean, depending on the system that you

have with the system is close to harmonic oscillator. Types then you can use the linear

combination of the Gaussian functions.

If the system is that of a columbic system like in the case of chemical in the case of

molecules; obviously, columbic interactions are important not for the starting point could

be something like the hydrogen atom wave functions for each and every electron, or it

slightly better approximation and so on. But the point is no matter what you choose. The

average  value  for  the energy that  you calculate  is  going to be higher  than the exact

ground state.



Let us look at this by a simple illustration ok. Let us assume that H of psi m is equal to E

n of psi n or a system with some atoms and molecule whatever, it  is ok? And let us

assume that n is finite.  It  will  never be,  but and the state of the system let  it  be an

arbitrary state, and in the same line as what we did in the last lecture. This will be k is

equal to 1 to n some constants C k some k.
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And let us calculate the average value for the energy using C k psi k wave functions.

These are the Eigenfunctions one to n. And C is the linear combination coefficient, and

remember that the psi k’s are given by the, or they have this orthogonal orthogonality

properties psi k star psi l d tau is delta kl; therefore, if you calculate the average value.

This would be the integral psi star H psi d tau. And let us assume that the wave function

itself is normalized, psi itself is normalized namely psi star psi d tau is one, which means

that if we use the expansion of all the Eigenfunction.

This means that k is equal to 1 to n sum over C k square is one, let us keep this in mind.

Therefore, the expectation value for the energy is given simply by this, and if you write

this up explicitly, it is sum over k psi star is C k star psi star k. Sorry, H acting on sum l

the same summation, but we will use a different index C l psi l d tau. This is psi, this is

psi star.
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You expand this this is sum over k sum over l C k star C l integral psi k star H psi l d tau.

And since the k psi k and psi l are all Eigenfunctions of the Hamiltonian, then this will

give you E l psi l. Therefore, the integral is psi k star E l psi l d tau is this part alone. And

that is equal to delta k l E l. So, if you substitute that here, then the average value for the

energy is sum over k sum over l C k star C l delta k l E l. Because of the delta k l if you

expand this sum k is equal to 1 to an l equal to 1 to n, k and l have to be the same.

Therefore, there' is only one sum which is sum over k or l whichever is the index you can

choose,  it  is  C k  star  C k E k  because  we have  removed  the  sum over  l  with  this

orthogonality. You know, this is the average value for the energy,.
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So, let us write this, expand this, it is E 1 times C 1 square plus E 2 times C 2 square plus

E 3 times C 3 square plus and so on. Let me introduce to this sum add and subtract that

we add and subtract E 1 times the sum over k equal to 1 to n C k square. We are adding

that and therefore, we also have to subtract the same thing E 1 sum over k is equal to 1 to

n C k square plus all of those E 1 times C 1 square plus a 2 and C 2 square plus so on.

Now you can rewrite this whole summation as follows, right.

This term is going to give you this is a particular term. This is going to give you E 1.

Because the sum over k square is one, but now let us take this into this form. Therefore,

this is E 1 C 1 square that is also an E 1 C 1 square, it gets cancelled out, but then the rest

of it will be E 2 minus E 1 times C 2 square, plus E 3 minus E 1 C 3 square plus etcetera

plus E n minus E 1 C n square.

The Eigenvalues are chosen in the order that E 1 is the lowest energy, E 2 is the next

higher  energy E 3 is  the next  higher and so on.  Therefore,  the energies H psi n the

energies given by this equation x psi n is equal to E n psi n. Let us assume that the

increasing order of energy is E 1, E 2, E 3 etcetera.  Then you can see that all  these

coefficients  are positive,  all  are  positive.  And this  is  definitely  positive  because of a

choice of the E 1 and you can see that  the average value for E is greater than E 1,

because it has the additional terms.
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When will be average value E become equal to E 1 ? Obviously, not when E 2 is equal to

E 1 because these are  different  Eigenvalues;  there never  going to  be equal.  What  is

important is this will be this energy average value will be equal to E 1 if C 2 square is 0,

C 3 square is 0, C n square is 0. Which means the psi that you have is now simply C 1 psi

1, and since psi is normalized C 1 is (Refer Time: 15:06), a phase factor is one we can

remove that then organization coefficient.

Therefore, psi has to be psi 1 if the average value E is equal to E 1. For all other choices

of psi ok, and for all others no matter what coefficients you choose psi n, the average

value we will be greater than E 1.

So, this is a very simple illustration,  but unless you happen to choose the trial  wave

function psi, which you think what represents the state of the system, and you want to

find out all the coefficient C 1 C 2 C n etcetera by solving the equation right. Unless you

choose the  trial  function  by coincidence  to  the  exactly  the  same as  the  ground state

Eigenfunction, the energy Eigenvalue that you calculate will always be greater than the

lowest exact Eigenvalue system, that is what this is this proof is about.

So, it is a very simple way of understanding that, that is our scale that is the bottom that

we want to calculate, and very often in quantum chemistry, the calculation of the lowest

or the ground state Eigenvalue of a stable system is called the search for the you know is

a wholly grail. This is fundamentally important for all quantum chemist that, they should



try and get the exact lowest eigenstate possible, and that will give you; obviously, the

molecular geometry, and all the equilibrium properties can be calculated using the lowest

Eigenvalue and the lowest Eigenfunction.

Therefore it is very important that variation theorem tells you, you can never do it unless

you happen  to  accidentally  get  you are  Eigenfunction  to  be  the  same as  the  lowest

Eigenfunction. But variation theorem tells you, you do not have to worry no matter what

you calculate all the calculations that you have done or greater than the lowest therefore,

it is the upper bound.

That it is avoiding and we have to find fine tune our wave function parameterize our

wave functions  in  such a  way, that  we minimize  whatever  energy  that  we get  as  a

function of the parameter and try to get the best possible wave function that is closest to

the Eigenfunction of the system. This is what the variation principle is. We will see some

examples and therefore, it might be easier after seeing the examples to go back and the

look at to the theorem again.
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Let us take a simple example H is a harmonic oscillator. It is a minus H bar square by 2

m d square by dx square plus half k x square. Now we will tweak this example, we know

the  exact  solution  for  the  harmonic  oscillator.  Therefore,  how do we understand the

variational principle? Let us choose an arbitrary wave function and calculate the energy,

and minimize the energy as a function of the parameter of the arbitrary wave function.



What is meant by the parameter? Here psi is equal to let us assume that it is C e to the

minus lambda k lambda x square lambda is unknown. And we want to find out wave

function psi  as a function of lambda as well  as the x of course,  lambda x.  X is  the

coordinate  for  the whole  wave function,  but  lambda is  the  parameter  that  which  we

evaluate different wave functions with different values of lambda to see what is the best

value of lambda that would give you the exact Eigenvalue or will give you closest to the

exact Eigenvalue.

But you know, that we have already guessed the wave function very close to that of the

harmonic oscillator wave function. You know that the ground state wave function of the

harmonic oscillator is alpha by pi 1 by 4 e to the minus alpha x square by 2.

Where alpha is obviously k m by H bar square root. You know that already, this is the

exact solution we know. Therefore, if you do this average energy calculation using the

psi, and if you get the average energy as a function of lambda, and if you minimize the

average energy as a function of lambda is equal to 0, you will get; obviously, lambda is

equal to minus alpha by 2, sorry plus alpha by 2 lambda there is already a minus psi here

you will get that as the answer. But the illustration is to tell you the process by which

variational principle is used in quantum mechanics right. Let us do that psi fx is equal to

C e to the minus lambda x square
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 C . The average value E is going to give you, the C star C square e to the minus lambda

x square between minus infinity to plus infinity that is a harmonic oscillator coordinate,

and then you have a minus H bar square by 2 m d square by dx square plus half k x

square, e to the minus lambda x square dx divided by C square e to the minus 2 lambda x

square d x from minus infinity to plus infinity.

This is let us first do this, because this normalization integral. You know the this has to

be equal to 1. So, if you want to do that there will give you the value for c. This is C

square times C to the minus 2 number 2 pi over a. So, it is root pi over 2 lambda. And

that  would  be;  that  means,  C  is  2  lambda  over  pi  1  by  4,  all  right.  This  is  the

normalization constant.
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Therefore, the average value e is 2 lambda by pi 2 1 by 2 which is E square, and then you

have the integral e to the minus lambda x square, times the derivative acting on E 2 the

minus lambda x square d x. Now you can do this d square by d x square on E 2 the minus

lambda x square will be d by dx on minus 2 lambda e to the minus lambda x square

lambda x e to the minus lambda where and that gives you minus 2 lambda plus 4 lambda

square x square e to the minus lambda x square.

So, that is the derivative when you have if you multiply this by d minus H bar square by

2 m d square by dx square, on the same you get minus H bar square by 2 m minus 2



lambda plus 4 lambda square x square, times e to the minus lambda. Then you have a

half kx square one to the minus lambda x square, ok.

(Refer Slide Time: 23:39)

So, the integral that you have to now solve is 2 lambda by I 2 1 by 2 minus H bar square

by 2 m, 4 lambda square x square minus 2 lambda times e to the minus lambda x square

plus k by 2 x square e to the minus 2 lambda by x square. All of this differentiated.

The answer will turn out to be H bar square by 2 m times lambda plus k by 8 lambda ok.

See the average value E as a function of lambda. Therefore, if you take the derivative of

this with respect to lambda, you get H bar square by 2 m, minus k by 8 lambda square.

And you minimize this by taking this to be 0, it gives you lambda is equal to pi by H is a

root km. H bar square is H square by 4 pi 2.

So, use that if lambda is given by this therefore, the wave function is e to the minus

lambda x square with the normalization constant 2 lambda by pi, 2 1 by 4. You can

immediately see that this is 1 by 4 square root of 1 by 2, sorry, 1 by 2 square root 4 pi

square, 4 pi square by H square into k m. And that is nothing but 1 by 2 square root km

by H bar square. Km by H bar square is alpha. Therefore, you can see that lambda is

equal to 1 by 2 alpha lambda is equal to 1 by 2 alpha.
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And 2 lambda by pi 2 1 by 4; obviously, becomes alpha by pi 1 by 4. Therefore, the exact

wave function E psi lambda or the average value E to become E 1 is e to the minus alpha

by 2 x square times the normalization constant alpha pi 1 by 4. How do you know that

this is the exact value? You use this value of lambda in the expression for the energy.

The expression for the energy is H bar square by 2 m times lambda plus k by 8 lambda.

You just showed that lambda is equal to pi by H k into square root km.
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Lambda is equal to pi by H into square root km ok. You can show that this gives you

immediately the energy E is equal to half H bar omega, where omega is square root of k

m, you can verify that. I mean with me therefore, you see that the energy Eigenvalue that

you get when you minimize the energy as a function of lambda gives you the energy E is

equal to half H bar omega, and gives you the parametric value lambda is equal to pi by H

square root of km. And therefore, it recovers that the energy minimization as a function

of this gives you the exact Eigenfunction and the exact Eigenvalue. That is because you

started with your function which looks very close to the exact Eigenvalue, namely e to

the minus lambda x square.

If  you  repeat  this  exercise  without  knowing  that  this  is  slightly  to  be  the  sort  of

Eigenfunction, but if you repeat this exercise with e to the minus lambda x; which is a

problem that I will discuss in the video tutorial, you will get a different value for E and

that will be greater than the E 1 in this case which is half H bar omega that we will be

greater than this. Therefore, you see if you choose a different function, if you choose for

example, psi of x is equal to a x square plus b x raise to 4, and now psi of x is expressed

in terms of 2 variables a 2 constants a and b.
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And if you calculate the energy using this form, then you will get E also as a function of

a and b . But you have a problem with this function is not the correct function, why?

Because the integral minus infinity to plus infinity of this psi of x psi square of x will



give you infinity. What about this function? This will also give you a problem, because

this cannot be normalized if you want to integrate from minus infinity to plus infinity.

Therefore,  you cannot  choose  random functions,  the  idea  of  choosing  these  random

functions wrong, and then showing you that this is incorrect the correct function that you

have to choose is one you have to choose a function that is normalizable.

Two you have to choose a function as a function of some parameters minimal set of

parameters. And then minimize the average value of the energy as a function of all the

parameters and then put the values of the parameters into the energy expression and get

the energy Eigenvalue. If with all of that you will not get the exact Eigenvalue, unless the

Eigenfunction happens to coincide with the exact Eigenfunction.

Therefore, variational principle always tries you that you go close to the minimal value

of the energy, but never exactly until you hit the jackpot you got a function by some

arbitrary choice you have got the exact Eigenfunction. But it always tells you that your

error is always positive, minimize the error, quantum chemistry is fundamentally based

on  the  advances  of  Hartree  Fock,  and  later  the  DFT every  method  that  you  see  in

computational chemistry depends on this fundamental principle in the calculation of the

ground state energy ok.

One last thing, what about other energies? The first excited state second excited state

variational principle does not say anything about them. This is only true for the lowest

energy E naught, nothing can be said about the first excited state or second excited state.

We  have  to  actually  calculate  those  things  using  the  best  variationally  minimized

Eigenfunction and linear combinations of such Eigenfunctions to calculate the excited

state, and hope that we are very close to the exact energy.

Therefore, the verification for all these things is the experimental spectroscopy which

provides  you  differences  between  energies  or  frequencies  as  measurements  that  for

computational chemistry must work very, very closely with experimental measurements

to see what is best possible wave function, and what is a best possible Eigenvalue and so

on.  So,  there  is  a  lot  more  to  learn,  but  let  me  start  here  this  is  only  a  cursory

introduction. In the next part of this lecture, we will see one or 2 more example which

are nontrivial, and then let me move on to the introduction of the chemical bonding as

the series of lectures to follow ok.



Until then, thank you very much.


