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Welcome  to  the  course  on  Atomic  Structure  and  Chemical  Bonding.  My  name  is

Mangala Sunder and I am a Professor of Chemistry in the Department of Chemistry in

Indian Institute of Technology Madras, ok. My email id is given to you here.

Now, in  this  lecture  we shall  look  into  the  first  few lessons  of  the  mathematics  of

Quantum Mechanics and in doing so, we shall introduce the concept of Linear Vector

Spaces.
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The introduction to this is through vectors, but then vectors represented formally using

matrices. As you know through the lectures in the last few that the quantum mechanics

proposed by Schrodinger started with differential equation model and we have a, we will

be solving a few of the differential  equations further in addition to what was already

done, but the other  form of quantum mechanics,  this was done by the use of matrix

mechanics and that was proposed by Werner Heisenberg, Max Born and Pascal Jordan,

well Werner Heisenberg, Max Born and.



So, in this lecture of course I would give you an elementary introduction. I am not going

to give you proofs and the mathematical definitions until the end of this lecture. We will

start with some definitions and become comfortable using the column vectors and row

vectors  and  matrices  representing  important  quantities  in  quantum  mechanics,  the

measurement quantities represented as operators using matrices.

So, we shall do all those things and towards the end of the lecture, I shall give you a

formal introduction to the mathematics in the sense of the definition using the axiomatic

method of the linear vector spaces, but this whole lecture is still hands on in the sense

you should be able to do things as and be operational in the use of matrices.  Please

understand the Schrodinger equation which is written as H psi is equal to E psi for this

course that is a time independent Hamiltonian with the wave function which of course is

dependent on time, but its position dependence is what is more important to us. This

equation is actually a matrix equation if you represent to the Hamiltonian which is an

operator in the form of a matrix and then, you will see that the function psi is known as

the Eigen function and the quantity E which is a constant and which has the dimensions

of energy, the total energy is known as the Eigen value.

Therefore, whatever we do today and in the next few lectures will be very important in

understanding the solutions of the Schrodinger equation using matrix methods and today

practical calculations involving large scale programming and computational chemistry

programs used in biology, used in medicine, used in the material science, used in physics

and chemistry, all use matrix Eigen value problems are solutions. Therefore, this lecture

is fundamentally important for us to understand the basics, ok.
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What are the lecture objectives to introduce the vector space? A special notation which

has been used by Paul Dirac, Adrienne Morris Dirac known as the Bra-c-ket notation to

represent  vectors using matrices;  basically  column and row vectors and row vectors.

Understand scalar products scalar products and norms of vectors all using matrices.

The sequence to this lecture will then represent the operators using matrices and we will

also give you a representation the operators using what are known as the basis operator

matrices and so on. Here in this lecture, we will see the vectors being represented by row

vectors and column vectors.
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In the beginning was Professor Von Neumann who published a very famous book known

as the Mathematical Foundations of Quantum Mechanics. The mathematics in this course

and  in  many  other  advanced  courses  in  quantum  mechanics  have  all  built  on  the

fundamentals and the foundational methods which are first proposed by a Professor Von

Neumann.

Now, let us start with very simple vectors in two dimensions. All of you know that if you

write any vector A in two dimensions, you normally represent this vector by some arrow

and the arrow tells you the direction in which the vector is a pointing to and the length of

the arrow giving you the magnitude of the vector. Now, one further step is to associate a

coordinate system in two dimensions. It is a planar coordinate system in which the two

coordinates x and y are orthogonal to each other and if we represent the vector in the

coordinate system, then we write to this vector in terms of its components namely the x

component and the y component, ok.

So, this is the unit vector in the x and y direction and therefore, you write the vector A in

terms of the component in the unit direction a 1 x and the component in the unit direction

y, so that you know that when you have to add this to get this vector, essentially you are

adding a times x which is the unit vector and two times y which is the vector in the y

direction.



So, this is the point and in a similar way if you write another vector b, it has a different

component b 1 x plus b 2 y and so on.
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What do we mean by that? We mean by that the vector x dotted with x is unity. It is

scalar 1 the vector y dotted with y, the unit vector is 1 and the scalar product between the

two vectors x and y. If you recall the dimensions, the scalar product definition it is a

magnitude of x and magnitude of y multiplied by the cosine theta, where theta is the

angle between x and y and you know that theta is 90 degrees. Therefore, this is 0, ok.

So, this is meant as the orthogonal and normalization representation of the unit vectors.

Therefore, when you write the vector A as a 1 of x plus a 2 of y, you know that the

component a 1 is nothing, but the projection of the vector A onto x axis and that you

know immediately it gives you a 1 x dotted with x plus a 2 x dotted with y which is 0 and

therefore, and this is 1. Therefore, you have a 1. So, you know when you say component

a 1 and a 2, it is a projection of the vector in that particular coordinate system projection

of  a  onto  the  x  axis  and  likewise  for  x  axis  onto  the  x  axis  and  likewise  for  the

component a 2, it is the projection of a onto the y axis which will give you a 2 times y

dotted with y and that gives you a 2.

Therefore,  these  are  projections  and the  word  projection  is  important  also  in  a  later

context. Therefore, keep this in mind.
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Now, when we say that a vector A has a magnitude, the vector A magnitude is actually

calculated as the magnitude of a dot a. The magnitude and it is a square root, ok. A dot a

gives you the square of the vector A and therefore, the magnitude of the vector A is the

square root of a square and that is also very easy to write down because you write this as

a 1 x plus a 2 y dotted with a 1 x plus a 2 y and it is a square root of it and therefore, that

gives you a 1 square plus a 2 square and gives you the square root, ok.

Therefore, A unit vector in the direction of a, yes a divided by the magnitude of a. So,

what you will have is, therefore a 1 by square root of a 1 square plus a 2 square on x plus

a 2 divided by square root of a 1 square plus a 2 square on y. So, this is what is called the

unit vector in the direction of a unit vector in the direction of x is of course, x hat and

likewise  y  hat.  Now, all  of  this  is  very  familiar  to  you.  Now, what  is  the  matrix

representation for all these things?
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In 2 dimensions, one represents the unit vector x by a column vector 1 0. It is 2 by 1

column that is it is A matrix with the two rows and one column. That is what is 2 by 1

mean. The unit vector y is represented as 0 1 and in matrix, the scalar product between

these vectors if you want to write x dotted x, then the scalar product is actually x of t, the

transpose of this unit this column multiplying the vector itself.

So, the transpose of 1 0 is the transpose which is a row vector, this is a column vector

and a row vector multiplied by the column vectors 1 0 gives you 1. Likewise when you

write y dot y in the matrix notation, it is the transpose of the column y representing the

vector y multiplying the vector y itself which is 0 1 multiplying 0 1 giving you 1 and in

this notation, it is also very clear when you write x dot y or y dot x. You know both of

which are 0. Essentially what it means is the left hand vector is written as transpose x T

dotted y or as y T dotted x and you can see right away that if you do this x T is 1 0 and y

is 0 1 which is 0 and likewise y T is 0 1 multiplying 1 0 and that is also 0.

So,  this  is  the  translation  of  the  idea  of  vectors  in  simple  physical  dimension  in  a

geometric  space  into  a  linear  vector  space  involving  abstract  quantities,  such as  the

matrices column vectors and row vectors and so on. So, this translation is important. This

representation is important  in understanding how to carry on this  process for vectors

generally in n dimension and then, the scalar products of them, then manipulating those

vectors with the solutions of the Schrodinger equation and all those things etcetera.
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So, now given that if we write an arbitrary vector A, then you know we have written this

earlier as a 1 of x and a 2 of y and that obviously now written in terms of columns. It is a

1 times 1 0 plus a 2 times 0 1 and doing the matrix addition you see that this is nothing,

but the column a 1 a 2 and therefore, when you write the scalar product of a with itself

what it means is it is A T dotted with A. So, what you have is a 1 a 2 a 1 a 2 and you can

see right away that this gives you a 1 square plus a 2 square.

Therefore, what is the unit vector a in terms of matrices? It is the vector divided by its

magnitude. You can see immediately the column is written as a 1 by square root of a 1

square plus a 2 square and the other is a 2 by square root of a 1 square plus a 2 square,.

So, what is a scalar product between two vectors? It is A and B. Again the left hand

vector is to be written as a transpose which is a row vector and the right hand vector

remains as this. So, you can see that this is a 1 a 2 and b 1 b 2 which gives you a 1 b 1

plus a 2 b 2.
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Now, is a dot b the same as b dot a it appears because if you write b T doted a the

vectors, then you can see that this is nothing other than b 1 b 2 multiplying a 1 a 2 and

so, you have b 1 a 1 plus b 2 a 2 which is equal to a 1 b 1 plus a 2 b 2 as long as a and b

are numbers a's and b's are numbers.

This is important. We know that matrices in general do not commute when we take the

product  of two matrices  a  b and then,  we compute the matrix  product  b a.  It  is  not

necessary that a b will give you b a. In fact, in general it won't give you that. Therefore,

the matrices the order in which you multiply the matrices are important, but if we are

dealing with numbers, we do not have an issue, ok. So, this is all elementary ideas. So,

this is how we represent to the vectors and this is how we represent to the scalar products

in two dimensions.

Now, how do we extend this to three dimensions? It is again very simple. You recall that

an arbitrary vector a in three dimensions if you have to represent it geometrically, you

remembered  now there  are  3  coordinate  systems,  3  basic  coordinates  namely  the  x

coordinate and there is a unit vector along the x direction, there is a unit vector along the

y coordinate known as the y unit vector and there is a unit vector along the z coordinate

which is called to be z. So, if I have to write this in some colors maybe you can see that

this is the unit vector z and this is the unit vector x and this is the unit vector y and

therefore,  any arbitrary vector if you do that,  any arbitrary vector  is  basically  if you



project that vector on to the xy plane and suppose it the projection looks like that, then

you see that it is nothing, but the projection of xy onto this plane plus the vector along

the z axis.

Therefore, a can be written as 3 components; a 1 times x plus a 2 times y plus a 3 times

z. Therefore, now you have in 3 dimensions 3 independent components and these are

nothing other than the projection of the vector A onto the respective axis in the unit, I

mean the unit vectors in the direction of the axis. So, a 1 is x dotted A, a 2 is y dotted A

and a 3 is z dotted A, ok.
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So, this is something you are familiar with; therefore, how do we represent this in terms

of matrices; very simple. You write to this in terms of a matrix with a 3 row and one

column with the first row being 1, second and third rows being 0 and likewise for y 0 1 0

and for z you have 0 0 1.

This  is  orthogonal  coordinate  system meaning that  3  coordinates  or  3  directions  are

mutually perpendicular to each other. Therefore, again it is possible for us to imagine that

the  unit  vectors  along these independent  3  mutually  perpendicular  directions  will  be

orthogonal to each other pair wise. So, x dot y is 0, x dot z is 0, y dot z is 0 and likewise

the other way around y dot x is 0 and so on, and x dot x is 1, y dot y is 1, z dot z is 1, all

these things are now replicated by these columns.



For example, if you write x dot x is nothing other than the transpose of the matrix x with

itself and therefore, you have 1 0 0 multiplying 1 0 0 and that is the number 1 scalar 1

and likewise you can show this to be y T dot y as well as z T dot z, and in the same way

you have x dotted with y is 0 and y dotted with z is 0 and x dotted with a z is also 0. So,

again this is an orthonormal system.
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So, immediately you can see that any vector arbitrary which is written as a 1 times x

which is 1 0 0 plus a2 times y which is 0 1 0 plus a 3 times z which is 0 0 1 is obviously

the column vector a 1 a 2 a 3 and therefore, the scalar product between two vectors a and

b if  you have to write and if  b is  the column vector given as b 1 b 2 b 3 as the 3

components of the vector b in this in these directions, then the scalar product is a T

dotted with that gives you a 1 a 2 a 3, the row multiplying the column b 1 b 2 b 3 and the

answer is a 1 b 1 plus a 2 b 2 plus a 3 b 3 and in a similar way, the unit vectors of A are

also very simple that the magnitude of a is now the sum of the 3 squares; a 1 square plus

a 2 square plus a 3 square root.

Therefore, the vector A is obviously a 1 divided by the magnitude that is a unit vector in

the direction of a, a 1 divided by this magnitude,  a 2 divided by this magnitude,  a 3

divided by this magnitude.
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So, unit vector A if you write, so that is the vector, unit vector with the magnitude 1 in

the direction of a, ok. Now, we have been careful enough to write x T T dot x. What

about x x T, what about y y T or z z T?

In three dimensions or in two dimensions, this if you just do the other way around now

that is going to give you not a number. It is going to give you a matrix and such things

will become norm as operators and they will be fundamental in representing the quantum

mechanical measurement quantities known as the operators and therefore, in the next

part  of  this  lecture  or  the  next  lecture  we  will  continue  with  the  definition  of  the

operators. I hope this was cleared enough for you to understand the connection between a

simple vector representation in geometry and an algebraic representation of the vector

using matrices, using column and columns and rows and taking the product. We will

continue this in the next lecture to represent the operators until then, 

Thank you very much.


