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Hello welcome back to the lectures in Chemistry on the topic of Atomic Structure and

Chemical Bonding. My name is Mangala Sunder and I am a Professor in the Department

of Chemistry in the Indian Institute of Technology, Madras. And my email addresses are

given here for you to contact me if you need. This lecture is a continuation of some of

the calculations we have been doing, namely on the particle in a one dimensional box as

well as the expectation values.

(Refer Slide Time: 00:43)

Go  a  little  bit  quicker  in  the  mathematical  approach  to  quantum  mechanics  or  the

mathematical methods in quantum mechanics. And let me introduce the postulatory basis

of quantum mechanics. And I am helped very much by many text books, but a particular

text book that I like a lot, and with which I read and studied quantum mechanics many

years ago, as the first topic is the book by Albert Messiah and there are 2 volumes on

Quantum Mechanics.

In fact, this is also referred very extensively by another very famous and very thorough,

textbook in Quantum Mechanics by Cohen Tannoudji from the from France in quantum



mechanics it is a very large volume, and that is of course, if you need to study the topic

much more in detail, ok. First few years when quantum mechanics was discussed a lot

early 1920s and later. The mathematical basis for quantum mechanics was also studied

by many. And one of the developments was to postulate some of the mathematical basis

for  quantum  mechanics,  and  then  apply  these  postulates  also  as  the  fundamental

principles of quantum mechanics.

There were 3 or 4 of them postulates which you will find in any textbook, but let me

write to them one after the other and explain them in the context of the atomic structure

that we are studying now and also using the bracket rotation which I introduced in the

mathematics part of this lecture earlier.
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The first postulate is on wave function. So, the wave function of a system in quantum

mechanics, completely describes the dynamics of the system, and the dynamical state of

the system. The dynamical  state is studied using the equations of motion,  but that is

another postulate. The wave functions have to have the basic requirement that they are

all square integrable or what we are familiar with in terms of the last 2 lectures, they

should be normalizable, let me write those things down here.

So, what is meant by this is something that you have already seen; namely, if the wave

function is a psi of say x and t it is also time dependent, but we have not talked about the

time dependence until now. The x being a representation for all the coordinates that are



used to describe the wave function, then this integrals psi star x of t psi x of t dx over all

the space available  to the system should be finite.  This is  important  in order for the

probability interpretation to be meaningful and to be applicable the condition that the

square integrable the square of the wave function here being the absolute square of the

wave function. Being integrable and giving you a finite value this is what is called the

square integrability property.

There are quite a few examples.
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You have already seen that the particle in a one dimensional box that we have used sin n

pi x pi L and we used to the space the finite space of 0 to L for the variable x. So, that is

the entire space available to the system x can take all the values between 0 and L. And

we found out that when you normalize this to unity you got this particular constant. So,

that psi star x psi x overall space namely 0 to L dx is actually 1.

It is a constant, but that constant turns out to be L by 2, if you use only the sin n pi x by L

as the wave function, then you divide by the 1 by the square root of the normalizable

normalization constant, and we get it therefore, this is a square integrable wave function,

ok. You can do that between 0 to L or minus L by 2 to plus L by 2, if you want to be

symmetric or any finite region. It is important that you use the finite region of space. You

cannot use the entire x axis from minus infinity to infinity and expect to this function to

be normalized it does not happen, ok.



Another example of the wave function that we may use from time to time is the function

exponential minus ax a real number finite number, between x is equal to 0 to infinity.

This  function  is  well  defined.  And  well  behaved  and  you  can  see  that  the  square

integrability here; is e to the minus 2 ax psi star psi, and if you take the integral from 0 to

infinity from of e to the minus 2 a x dx if you do this the integral has a value 1 by 2 a.

Therefore, therefore, the wave function psi of x is equal to root 2 a e to the minus a x in

the interval 0 to infinity. It is a normalized wave function because when you do psi star

psi on this you will get.
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There is also another important wave function e to the ikx i is square root of minus 1, the

imaginary number. And of course, k is a real number greater than 0 and x between 0 and

2 pi by k as a range, because beyond that range this function repeats itself, and you will

see this function when you study the particle on a ring. And a solution and the square

integrability of this wave function e to the ikx is now carefully to be written with the psi

star x psi x dx between 0 and 2 pi by k.

If you do that, then you would see that the answer is 0 to 2 pi by k e to the minus ikx

complex conjugate of psi times e to the ikx dx; which is the integral of 1 between 0 and 2

pi by k and the answer is 2 pi by k.

Therefore, the wave function psi of x is equal to square root of k by 2 pi. This is the

normalization constant and therefore, the wave function is normalized if you take 1 by



root n and you multiply the wave function. So, always that is to be remembered, and then

you write  e  to  the  ikx in  the range 0 x between 2 pi by k is  another  example  of  a

normalized wave function. And we will see something like that when k is one we will see

this as 1 by rho 2 pi.
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In the last important example for our problem is the Gaussian wave function, this is the

4th example and the Gaussian wave function is an exponential minus a x square, a is a

real  constant  greater  than  0.  Then  the  psi  if  you  write  this  as  the  wave  function  a

normalization constant n times e to the minus ax square, then psi star x psi of x d x.

Between  minus  infinity  to  plus  infinity,  the  entire  range  of  x  over  the  real  axis  is

permissible now and you have the integral e to the minus 2 a x square, dx between minus

infinity to plus infinity, and you know this is a standard integral given in textbooks. And

it is something that you might also have to memorize for this course is this integral is 2

pi by 2 a whatever is the constant here.

And therefore, and that should be set to one for normalization, and therefore, n is squared

2 a by pi to 1 by 4, ok. So, the wave function psi of x is equal to 2 a by pi to 1 by 4 e to

the minus a x square is a square integrable wave function over the entire x axis the real

axis minus infinity x plus infinity. So, these are some examples of the normalized or

normalizable or square integrable wave function. And in the quantum mechanics that we



would be studying in this course, we would confine ourselves to wave functions which

can always be normalized to 1.
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Second property it is related to the wave function itself the second property for the wave

function is it is linear. That is if psi 1 of x and psi 2 of x are 2 solutions to the dynamical

equation. Any combination linear combination lambda 1 psi 1 of x plus lambda 2 psi 2 of

x will also be your wave function that can be used.

This is linearly combining the 2 wave functions or for that matter not just to any number

of them. But they have to be combined as linear, but lambda 1 and lambda 2 as constants.

They can be real or complex it does not matter. They have a specific interpretation when

we try to normalize this wave function overall, and attribute specific properties to these

wave functions as Eigen functions of the operator whatever Hamiltonian or any operator

that we deal with. But if the vector space in which we are working mathematically, the

vector space contains to any for any 2 functions psi 1 and psi 2 x, it also contains all

linear combinations of the 2 wave functions and likewise for infinitely many.

Theses these are also square integrable as long as lambda 1 and lambda 2 are finite. So,

this is regarding the postulate of the wave function.
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Now, before we move on to the second postulate, that is write down these things using

the notation that we are familiar with the bracket notation. The wave function psi of x is

actually a number. It is a projection of the abstract vector psi into what is known as the

configuration space x; meaning coordinates length position whatever you talk about so,

these are coordinates. So, it is the projection of the abstract psi onto the coordinate axis

which gives you the wave function psi of x. And we have been working with these wave

function still now, but this is the notation for psi of x using the bracket. And psi star of x

is quite; obviously, the complex conjugate of this. So, if you want to write the x psi star

the complex conjugate is psi x with the bracket reversed.

This is obviously, if this is a ket vector, then you know this is a bra vector. And therefore,

if you want to talk about the scalar product of 2 vectors psi 1 and psi 2, in the space of x

in which we represent  to these wave function.  So, you can also call  psi  1 of x is  a

representation of the ket psi, ok. And if you want to take the scalar product of 2 such

vectors abstract vectors, they are written using the operator space, that we have earlier

introduced except  now we are using continuous vector space therefore,  what we will

have is psi 1 of x x psi 2 dx over all space available.

So, this is the coordinate representation scalar product, and you can recall immediately

that this is psi 1 star x, and this one is psi 2 x dx.
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Therefore, the normalization property is now represented by psi 1 psi 1, and this is the

square of the magnitude of psi. And if this is normalized, then what it means is that psi 1

star x psi 1 of x dx over all space is 1 for normalized vector.

It is important that you get to use the standard notations of the vector space quantities the

vectors the wave functions, in configuration space in momentum space on in any other

coordinate space that we have; therefore, the x is a symbolic representation of the space

in which we consider the wave functions, but the wave functions are basically ket vectors

in an abstract space known as the Hilbert space, but we will not worry so much about

that, but this notation is important to keep in mind,.

Now, we will move on to the second postulate, ok before that a few properties of this

needs to be looked at. So, let us write them down properties. The first one is something

you have already seen namely psi 1 psi 2, also defines the complex conjugate of this psi

2 psi 1 star. Likewise, the scalar product of any linear combination lambda 1 psi 1 plus

lambda 2 psi 2, if you write that,  and if this is a ket vector the linear product linear

combination leads to the scalar product lambda 1 phi psi 1 plus lambda 2 phi psi 2, ok.
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If 2 vectors psi 1 and psi 2 or such that that this is 0 and therefore, the complex conjugate

is also 0, then vectors psi 1 and psi 2 are orthogonal. The scalar product or the norm of a

vector this is a square of the length or the magnitude as you call it is always greater than

or equal to 0 if the vectors are the same.

Now, another important property is what if the linear combination is a bra vector, if you

do that the coefficients or the bra vector if you recall the postulates the bracket notation

earlier the coefficients come out as complex conjugates lambda 1 star then you have psi

1 phi plus lambda 2 star psi 2 or phi ok.

And you know this is nothing other than lambda 1 star, phi psi 1 star plus lambda 2 star

phi psi 2 star. And you know this is the complex conjugate of this product lambda 1 psi 1

plus lambda 2 psi 2 star. These 2 are equal, and you can see therefore, this is the same

thing as taking the lambda 1-star psi 1-star phi psi 1 star and likewise. So, these are

properties  which  are  important  when  we  calculate  the  wave  functions  they  are

normalization constants they are orthogonal properties and so on, ok.
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So, let us move on to postulate 2. Postulate 2 is on the average values or what are known

as the expectation values or expected values. So, the mean value or what is called the

average value of any quantity which is measurable in quantum mechanics experimentally

is represented by an operator a such that the measurement of that property in the state psi

of that system is given by this definition psi star A psi dx I am writing dx as for the

integral over all the configurational space quantities divided by psi star psi dx. And if the

wave function is normalized this is usually 1 for normalized wave function.

So, to write this in the bracket notation this will be psi A psi divided by psi psi; which is

psi A of psi, as long as this is normalized unit.
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So now, you can see immediately  that  if  we write  this  quantity  psi  A psi  using our

notation of the configuration space this integral is dx psi x x A x x psi divided by integral

dx psi x x psi,. These operators are called local operators position, momentum, all these

things that we study the dipole moment and all the properties that we normally represent

physical  properties  for  a  molecular  system  or  on  atomic  system.  They  are  usually

considered  to  be  local  operators.  And therefore,  if  you recall  this  is  like  the  matrix

element of the operator A is the matrix element A x x; with a slight difference that x can

take any values therefore, the matrix is not only infinite dimensional, but it is also the

labels like 1 2 3 4 for columns and rows is A is a bit difficult.

So, this is a continuous space, these are all generalizations. So, this is called the local

property  local  operators,  and there  are  non-local  operators,  but  we will  not  concern

ourselves. Therefore, when you write the integral for example, for A is equal to p the

integral is written using minus ih bar d by dx; which is the operator representation.
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Therefore, if you expect if you calculate the expectation value of p of psi, it should be psi

star of x minus ih bar d by dx psi of x dx between overall space.

Now, recall that this is the equivalent of A x x or P x x this is the local property, ok. Now,

for the examples of the particle in a one dimensional box we saw that this answer is 0,

but if you have to calculate instead of momentum you calculate the angular moment for

the particle on a ring. You will see that for certain wave functions this number is not 0, it

is a very precise value. Therefore, depending on the form of the wave function psi of x, it

is  possible  for us to have an average value for the momentum of the particle  which

means that the momentum is nonzero.

But  for  the one dimensional  2  dimensional  box problems and also for  the harmonic

oscillator that we will study, we will see that the linear momentum for eigenfunctions of

the Hamiltonian is always 0. But this is the general representation for the matrix element

or the calculations of the expectation values of the operator, ok. Since we consider only

measurable quantities, the operators all have a specific property known as Hermiticity,

ok. Let us first define the Hermitian adjoint of an operator A dagger by the following.
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For any 2 wave functions psi of x phi of x which is permissible within the space that we

are studying, the Hermitian adjoint of the operator A dagger A is defined as follows. Psi

of star x A phi of x is always equal to A dagger psi of x star phi of x dx dx.

This is always true even if the operator is not Hermitian, ok. This is the definition of the

Hermitian adjoint. The operator sandwiched between 2 wave functions psi and phi on the

left hand side, and the Hermitian adjoint is acting on the wave function the left wave

function, but the product is taken as a complex conjugate multiplied by the right hand

wave function phi of x dx, this is now 2 operators a and A dagger or equal Hermitian if

the following were true namely psi of x A phi of x dx is A psi of x star phi of x dx.

Therefore, A dagger is now replaced by A this definition holds and then we say that the

operator is Hermitian. And all quantum mechanical measurable quantities like position

momentum,  angular  momentum,  dipole  moment,  electric  quadrupole  moment  the

polarizability in spectroscopy; practically all the quantities that you calculate in quantum

mechanics,  for  the  atomic  and molecular  properties  electron  density  everything  is  a

Hermitian operator is represented by a Hermitian operator.

Therefore, the Hermitian operator is something that you have to be very clear. It is easy

to understand the Hermitian operator from the matrix viewpoint, because what you have

seen is the definition of A.



(Refer Slide Time: 26:32.

If you go back in the basis psi phi 2 different labels therefore, if you have many basis

functions, psi 1 of x psi 2 of x psi 3 of x, or in the vector notation psi 1 psi 2 psi 3 and so

on, then the Hermitian operator is given by this property phi. So, sorry we have psi so, let

us write them is using psi i A psi j is now A psi i psi j.

If psi i and psi j are eigenfunctions, if are eigenfunctions of A this is for a Hermitian.

Then what we have is A psi i gives you some eigenvalue times psi i A psi j gives you

some another eigenvalue b times psi j.
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And then you can see immediately that psi i A psi j is given by psi i with the constant A

sorry this is a b b psi j, and since this is a constant we can take it out and it is on the ket

therefore, we can take the constant as this b psi i psi j.

Now, if the operator is Hermitian then this is A psi i psi j, these 2 are equal, ok. And that

gives  you  a  psi  i  psi  j.  Because  the  eigenfunction  psi  i  for  the  operator  a  has  the

eigenvalue a and therefore, this is a star, psi i psi j. These are some examples of how to

manipulate the wave functions and hermiticity property of an operator using the ket bra

notation.
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Now the last  thing regarding the operator is what is known as the uncertainty in the

measurement, or what are known as fluctuations in the values for A ok.

The uncertainty delta A is given by the square the average of the square of the operator

minus the square of the average; however, if psi is an eigenfunction of the operator A

giving you an eigenvalue A psi, then you can see immediately the following delta a goes

to 0, for eigenstates of A. It is easy to calculate, because you know what is the average

value? A is psi A psi, and this is the constant a times psi, psi and let us assume that this is

normalized and therefore,  the answer is a a. What is the A square average? A square

average is psi A square psi.
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And that is easy to see immediately that if you write to this A square as psi A A psi as you

have done with the p square operator. You remember minus ih bar d by dx, minus ih bar

d by dx for the particle in a one dimensional box was written as minus h bar square d

square by dx square. The kinetic energy times 2 m the mass.

So, if you write this then you see immediately that this is psi A A psi and that is taken out

to give you psi A psi. And this will give you one more a therefore, it gives you a square

psi. And therefore, it is equal to a square.

So, it is immediate therefore, to see that the delta A which is the difference between the A

square average and the average of the squared is A square minus A square, therefore this

is  0.  Therefore,  the  eigenstates  of  any  operator  are  such  that  the  uncertainty  in  the

measurement of the eigenvalue delta A is always 0, ok. These are called dispersion free

states or fluctuation free states fluctuation free states.

The  uncertainty  delta  A is  0,  this  is  only  true  for  the  eigenstates  of  any  operator.

Therefore,  if  you  take  2  operators  delta  a  and  a  and  b,  and  if  you  calculate  the

uncertainties of delta a and delta b and take the product delta a will be 0, and delta b will

be 0 only if a and b both have the same eigenfunctions. Therefore, it is important that the

uncertainty  principle  in  general  can  be  generalized  to  operators  which  do  not  have

simultaneously the same eigenstates. We will see more of those things as we go along,

but I have already introduced to this idea that uncertainty can be generalized using what



is known as the non-commutation between the 2 operators and such relations are quite

unknown, ok.

But for the present discussion these definitions and the introduction of the postulates is

what you have to keep in mind.
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The  third  postulate  is  something  that  you  already  know, the  definition  of  the  wave

function entails that psi star psi d tau is a probability. For finding the system between tau

and tau plus d tau of the system, ok. This is actually postulate one in the definition of the

wave  function,  the  wave  function  is  defined  such  that  psi  star  psi  dx  must  be  a

probability, but it is also sometimes the represented as a separate postulate.

But the more the last one the most important postulate is the dynamical equation. This is

an  extremely  useful  postulate.  We will  not  solve  this  equation,  but  the  dynamical

equation for the wave function for any system with the Hamiltonian H is given by d psi

by dt. Well, to be precise I should write the partial derivative dou by dou t of psi is the

Hamiltonian which may or may not depend on time; when H is independent of time, we

have seen this earlier also that we study the equation h some wave function phi is equal

to e of that wave function phi.



So, that the phis or eigenvalues of the Hamiltonian operator with the eigenvalues E and

the connection between psi and phi in such case is the operator e to the minus iht by h

bar, acting on phi gives you the time dependent solution that you have for this problem.

These 2 are not the same wave functions, ok. The wave function here depends on the

time the wave function phi does not depend on the time, but it has the factor associated

with it which is obtained by putting in the eigenvalues of the Hamiltonian in here. And

we have probably even an assignment problem that you have solved earlier; that this is

nothing other than psi.
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This is nothing other than e to the minus i e t by h bar of phi, provided that h on phi gives

you e on phi.

So, there is a time dependent factor; however, if you calculate to the probability density

or the normalization factor psi, you will see that the ket is e to the plus i t by h bar,

because this is a complex conjugate. And then you have the bra this is the bra state and

the ket state is e to the minus iet by h bar phi. And so, you can see that this is nothing but

phi.  Therefore,  for  time  independent  Hamiltonians  the  probability  density  and  the

normalization  factor  do  not  depend  on  time,  they  are  both  given  by  the  same

normalization factor m.



So, these postulates are important to keep in mind. You will have to go back to these

things as the fundamental mathematical basis. This is a very preliminary non descriptive,

I mean mathematically it is not a very descriptive form it is more in English words. The

postulatory basis  is  often invoked in the mathematics  of the linear  vector  spaces the

mathematics of the operators, that is a whole branch of mathematics which builds on the

foundations  of  quantum  mechanics,  which  was  first  put  forward  by  2  very  famous

people.

Professor Von John Von Neumann, and in a lot of this mathematical basis is also found in

the book by Paul Dirac. These are 2 of the most illustrious founding fathers of quantum

mechanics and who provided a considerably detailed mathematical representations for

the wave functions quantum mechanics.

I only introduce this to you in a brief form. We will stop this we will not look at it, but

remember  the bracket  notation  is  something that we will  use quite  often in  the later

lectures.  So,  please  keep  this  in  mind,  we  will  meet  again  with  the  next  week’s

assignment. Until then, 

Thank you very much.


