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So, now you will use the transition state theory expression to calculate the rate constant

for the structureless molecules. And you should get the similar expression which we got

in collision theory. Now, one important thing to note here is that we actually said this

frequency we which is the characteristic frequency as nu dagger, but we do not need to

calculate nu dagger, because we set that k 2 to be identical to nu dagger. And then one

factor  comes  out  when  we  do  the  calculate  the  particular  partition  function  the

vibrational partition function for the for this transition state and that also gives us a factor

which is k B T by h into nu dagger; and this nu dagger now cancels out which you have

seen

So, we do not need to actually focus much onto characterize which vibration given rise

to the product or we do not need to actually identify the specific reaction coordinate how

the reaction is occurring. So, we do not actually need to focus too much on the dynamics.

Secondly, as you see here that there is no dynamics here because we did not consider any

dynamics here that the molecules are colliding and they are forming on some activated



complex, and then it is reacting it is very different from what we the from our approach

that we used for bimolecular reactions.

So,  for  a  very  complicated  molecule  like  a  big  polyatomic  molecule  when  they are

colliding and they are forming something for a bimolecular elementary reaction, we can

write an applied the transition state theory if  we know that  from electronic structure

theory  the  geometry  of  the  activated  complex.  And if  we can  actually  calculate  the

partition  functions  which  are  again  time  independent  quantity  because  these  are  all

equilibrium statistical thermo dynamical properties, and we can calculate the partition

functions and then we are done.

So, all we are doing here is basically statistics and the entire dynamics actually is gone

and that is the beauty of transition state theory that although you are calculating a rate

constant which is a very much dynamical parameter. You are not doing any dynamical

calculation  explicitly  meaning  you  do  not  need  to  explicitly  solve  any  dynamical

equation like Newton’s equation of motion or Schrodinger equation of motion. You are

just  simply  doing  statistical  mechanics  and  that  to  time  independent  statistical

mechanics.
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Now, let us do that. So, for a to say if A and B are something like hard spheres as we said

and the transition state will look like something like this, and where this distance which

is basically the center to center distance on the nuclear internuclear distance when these



two spheres touch each other that we denoted as b max in our derivation for the collision

theory which is nothing but the radius of A applies radius of B and this will encounter

shown.

So, now let us first try to calculate the partition functions. Now, the expression for the

rate constant is for the using the transition state theory is k B T by h, where k B is the

Boltzmann constant times we know that we have a partition function for A B dagger per

unit volume where we have taken out one vibrational degree of freedom divided by q A

by v into q B by v into e to the power minus e star by k B T.

Now, we are going to only calculate this part, and then we can go back to this thing,

because  this  part  is  similar  to  the  collision  theory. And this  we will  see we will  be

reduced to a useful version. So, what will be the expression for this thing which is q AB

dagger by v with a prime? Now, this is a diatomic molecule. And as you can realize that

it has only one vibration right, it is not a diatomic molecule I should say it is basically

bimolecular collision, these two are two molecules.

And this is the AB thing, but again it is a crude thing in the sense that the you can think

that A and B are touching and then of course, in the transition state there is a vibration for

the which is like AB vibration,  but this is not exactly the AB vibration.  So, this is a

oversimplified picture. This is some other vibration that will give me a product because

if AB vibrates, it will be again A plus B something like that. But we are talking about a

reaction where it gives some product which we do not know.

But we are just trying to mimic the collision theory approach to understand that this

gives us the similar result. So, I have AB and here I have AB dagger and now AB dagger

in our the way we have drawn it  we to  for  two hard sphere there will  be only one

vibration and that one vibration already we have let  us assume that we have already

calculated it. So, in the AB dagger partition function, there will be only translation and

rotation  and electronic.  So,  for translation,  we know that  what is  the translation  and

partition function expression.
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So,  q  translation  by  v  we are  actually  associating  the  volume with  the  translational

partition function and you know that it is basically 2 pi m k B T by h square raised to 3

by 2. Now, 2 pi m instead of m i have to now take m A plus m B because that is a total

mass of the activated complex 2 pi m k B T divided by h bar squared raised to 3 by 2.

Then it will have its vibration, vibration we have already taken care of and it will have its

own rotation.

And the rotational partition function if you remember the formula it was 8 pi square I, I

is the moment of inertia k B T by h per square into sigma. Now, sigma is the symmetry

number, but it will be equal to 1, if A and B are different. And let us assume that A and B

are different. If it is h, and h then you have to use actually a symmetry number of 2,

because one rotation on half rotation gives you the same structure back. So, we are not

writing  any  symmetry  factor  here.  And  this  is  for  a  linear  molecule  the  rotational

partition  function.  And the  way you have  drawn it  the  transition  state  is  also  linear

because you have a sphere here and then it is basically the rotation of that thing.

So, we are we are assuming it to be a sphere and electronic partition function also let us

assuming it to be 1. Let us not write a bother about the electronic partition function right

now; let  us bother  only about  the say translational,  rotation  and vibrational  partition

function divided by we had q A and q B.



Now, since these are hard sphere, they do not have any other degree of freedom rather

other than translational degree of freedom. So, we have to consider only the translational

partition function per unit volume for A as well as for B. So, the way we are writing it

note carefully, so it is 2 pi m A k B T by h bar square this is for q A by v which you wrote

here. And similarly for q B by v, we can also write similar expression 2 pi m B k B T

divided by h bar squared raised to the power 3 by 2 times we had k B T by h and times

we had e to the power of minus e star by k B T.

So, what we get here, you can notice carefully that I have let us first calculate the 3 by 2

terms. So, I have k B T by h times. So, as you can see I have 2 pi here k B T here and h

bar squared here that will cancel with this. So, these things will cancel which is each

other.

Now, what I am left with is one 2 pi k B T by h bar squared, so in the denominator. So,

what I will have here is 1 over and then also notice that I will have m A times m B and in

the numerator I have m A plus m B, so that I can actually write something like m A m B

divided by m A plus m B and then I have one 2 pi m A and all the combinations of m A m

B and I have also one k B T so and also I have one h bar squared that raised to the power

3 by 2. So, that is the 3 by 2 terms.

Now, you can see that this entire thing is nothing but my reduced mass of the system. So,

in the next line what I am going to do is that I will just replace it by the reduced mass

mu. Now, before we go there, I also have the rotational partition function as you can see

here, so that is 8 pi square and then I. So, what is I? I is moment of inertia now how do

you define I, I is basically mu times the r square, but r is basically radius of gyration.

And then that is nothing but for this system is b max. So, it is mu b max squared and

times I will have k B T and divided by h bar squared times I will have e to the power

minus e star by k B T.

Now, we can arrange the terms one by one. And then you see here that I will have k B T,

let us also let us write it once again and times I will have h bar squared by 2 pi mu k B T

raised to the power 3 by 2. And then I will have 8 pi square into moment of inertia is pi

sorry it will be mu b max square not pi, it will be mu into b max squared into k B T

divided by h bar squared into e to the power of minus e star by k B T. We have to



simplify this expression. So, what I am going to do is that I know that I will just my

purpose is to show it as the transition state expression. So, I need one pi b max squared.

(Refer Slide Time: 12:25)

So, I can still one pi from here and the b max squared also I am just skipping. So, I am

just writing it as pi b max squared times I am also keeping this thing untouched e to the

power minus e star by k B T and then let us see what we are left with. So, we are left

with one k B T by h here. Let us first calculate the k B Ts. So, what we have k B T here

and then I have one k B T here. So, these two gives me k B T squared and then in the

denominator I have k B T to the power 3 by 2. So, it is k B T squared divided by k B T to

the power 3 by 2 k B T square is k B T to the power 4 by 2. So, together I will have k B

T to the power of half. And then what else I have one mu here and I have mu to the

power  3  by  2  in  the  denominator.  So,  I  will  have  mu  to  the  power  half  in  the

denominator.

And now let us calculate the h, so I will have h here and I have h bar squared here. So,

let us calculate the h bar first. So, h bar squared and h bar squared here they will; so it

will be h bar squared and h bar squared. So, I will have h bar to the power half, but then

also h bar is nothing but h pi 2 pi. So, in that sense, I can write it as h by 2 pi and then we

can easily figure that out how it gets cancelled. So, let us just do it. So, this h is I have

one h here as you can see, and then I will have one h bar squared here. And I will have h



bar to the power 3 by 2 h bar square to the power 3 by 2, so which is h bar cubed and

then I will have one h bar squared instead of h bar.

So, let us write it once again. So, I have this h bar squared and h bar cube, so I have h bar

divided by h and that will give me basically 1 over 2 pi eventually times what I have let

us also calculate the 2 pi’s I have 2 pi here. And I have 8 pi here because already one pi

we took out for pi b max squared. So, I have 8 pi divided by 2 pi to the power 3 by 2 8 pi

divided by 2 pi to the power 3 by 2 something like that, so that also can simplify. So, this

is 2 pi and 2 pi to the power 3 by 2, it will be 2 pi to the power of 5 by 2 and then this is a

pi here. So, this is simplify that thing.

And ultimately what we will get is these 2 and 2 to the power 3 by 2, you will get the

value of 8 k B T by pi I have a mu here also the entire thing raised to the power half. And

then I have basically already derived the transition state see sorry the collision theory

expression. And we see that the expressions are exactly the same all right. Now, let us go

back and look at the other expression for this collision theory, where we showed that not

collision  theory  transition  state  theory,  where  we  showed  that  this  entire  thing  the

expression can be written as k B T by h into some equilibrium constant.

(Refer Slide Time: 16:45)

Now we can rewrite it as k TST is nothing but k B T by h into I have some equilibrium

constant for reactant to transition state equilibrium, but with the prime and the prime

denotes that the one degree of freedom is less. Now, what we can do is that we can apply



just  classical  thermodynamics.  And  we  know  that  the  relation  for  the  equilibrium

constant with the change in the free energy. And we are going to just use that relation.

So, we already know that del G is equal to minus R T l n k equilibrium. In this case it is

for the transition steps, so I am writing it as a del g dagger. So, this is k equilibrium

dagger with a prime sign or we can just keep the prime sign whichever it is. It denotes

basically equilibrium between the reactant and the transition states.

Now, what is a, if we just write it, so you can easily get the expression as e to the power

minus del G dagger by R T. And remembering that  del G dagger has one degree of

freedom this. Now, what is del G? Del G is at constant pressure and temperature it is del

H minus T delta S, of course, it is at constant pressure and temperature that is why we

got this expression. Now, what is del H? Del H is nothing but del of U plus P V, if it is an

ideal gas assuming an ideal gas behavior and it assuming a gas phase reaction.

Now, we have actually delta U, delta U is the change in internal energy that is connected

to  the  activation  energy  which  Arrhenius  has  got  experimental  because  this  is  a

macroscopic quantity which we measured. And e star or epsilon e star that notation is a

microscopic quantity which actually denotes from the zero point energy differences. And

delta P V, now P V actually you can approximate a further as ideal gas equation. So, in

the previous case when we write it a H is U plus P V that is not for ideal gas solution that

is by definition of enthalpy.

And now we are applying the ideal gas equation, and where actually it is a delta of n R T.

Now, R T is a constant. So, it is nothing but delta n times R T minus T into delta. So,

delta n here is basically the change in number of moles. Now, for our reaction if you

think that I had a bimolecular reaction and that is forming a transition state which is just

one molecule. So, the change in number of moles is basically minus 1, because I had two

moles here and one more here. So, it is 1, minus 2, it is minus 2.

So, you can write out a write that it is nothing but delta E a it will be a minus sign here,

so minus R T minus T delta S. I can put it back into this equation. So, what I see here, it

is k B T by h times e to the power minus. So, first I am writing this term R T term. So, e

to the power minus R T by R T minus R T by R T, it will be basically just or e to the

power plus 1 times I will have a factor which is e to the power minus E a by R T. And



then I will have a factor which is e to the power minus not minus it is a plus sign delta S

by R, because there was a T here, it cancels with this T here.

So, we can just rearrange the stuff which is k B T by h into e to the power minus E a by

R T or we can actually keep all these form like k B T by h into e times e to the power

delta S by R times e to the power of minus E a by R T. Now, you see that this has a

similarity  with  the  Arrhenius  equation.  Now, the  question  is  what  we  get  from this

derivation is an expression for this A, which is the pre exponential factor. Now, what is

the  physical  significance  of  the  pre  exponential  factor  which  we  just  derived  from

transition state theory?

Now, what you see here is a very interesting thing it has a k B T by h factor and then

there is a e, e is a constant and it is a temperature dependent of course, because there is a

T here. Now, it  has this striking factor e to the power delta S by R. Now, that is an

entropic factor. Now, think about it if we have a two body like A and B bimolecular

reaction and then is forming the transition state. Then the transition state is a just one

molecule you can think of it. So, in some sense actually transition state is more ordered

because as you see that the change in entropy in this case is negative, which means the

overall reaction probability will decrease once you go from the reactants to the transition

state.

If that actually makes sense because when you do make a derivation from the collision

theory, you actually calculate all these the a actually that is related to the number of

collisions.  Because you if you remember this collision cross section pi b max square

times  the  relative  velocity  and  these  two  thing  gives  you  basically  the  number  of

collisions terms. And then there is an energy factor which is e to the power of minus e,

but some energy by R T. But then you say that that energy factor takes care of the fact

that all collisions does not give you the products only those collisions which can cross a

certain amount of energy will give you the product. But then we always overestimate the

reaction rate.

The meaning of the overestimation is this that you your transition state has to be nicely

oriented. In a sense like we always said that this A and B are kind of structure less in this

case, but in reality A is the molecule, B is a molecule and they have to actually collide in

the right fashion. For example, suppose if you are talking about collision between two



molecules, but these molecules had two functional groups which are like this, then these

two  functional  groups  would  interact  with  each  other  like  this.  So,  if  the  collision

happens  like  this,  although  the  energetically  the  collision  may  be  favorable

orientationally it may not be favored.

So, this orientation factor is directly embedded in the entropic factor. So, you have to

have the right arrangement which will reduce the entropy of the system, because you are

going from a less organized structure where the reactants are randomly moving around to

a more organized structure in the transition state for which the entropy should decrease.

And  then  actually  you  can  have  a  decrease  in  the  reaction  probability  which  you

calculate, which actually takes care of the all the orientational factor that you did not

account  for  when  you  did  collision  theory  expression.  This  is  how we  can  actually

understand  how the  transition  state  theory  can  give  me  an  interpretation  of  the  pre

exponential factor, in terms of the probability factor which directly relates to an entropic

factor.
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Now, let us summarize this part. So, what we did in this part is that we first started with a

discussion on the potential energy surface. Now, for a potential energy surface, we talked

about  always by molecular  reaction.  And then we for developing the concept  of the

saddle  point,  we said we considered  a  reaction  where actually  a  atom reacts  with  a



diatom. It is also kind of a bimolecular reaction where one molecule is a diatom; and the

other molecule is just a monatomic molecules something like that.

And then we talked about a reaction like A plus B C, and we draw the potential energy

surfaces. And we found that the reaction actually goes through a minimum energy path,

minimum in the sense that whenever it moves it actually moves along a minimum path

which is minimum in the orthogonal direction, but then it actually goes to a maximum

and when it reaches it maxima it means that it is since it is always at the minima position

in  all  other  orthogonal  direction,  this  point  represents  maxima  in  one  direction  and

minima in all other direction.

So, it looks like a saddle and that saddle point you can think that the geometry of the

saddle  point  is  something like  neither  the  AB bond is  broken not  the BC bond this

completely form. And you call this thing as a transition state geometry. And this entire

thing you call  it  as a complex and you call  it  as  activated  complex.  Now, then you

formulate your theory, and you say that this activated complex is in equilibrium with the

reactants. So, you can actually directly go from here. 

So, A plus B is in directly in equilibrium with some activated complex and that gives rise

to the products. And then you say that fine if it is in equilibrium I can directly use the

equilibrium approximation. And then you say that the rate of product formation that we

directly connected to the vibration of the activated complex. And the rest of the thing can

be equated to an equilibrium constant which can be connected to the partition functions.

And then you cleverly calculate the partition function, where you separate one degree of

freedom from the rest of the degrees of freedom, and that one degree of freedom which

shows as  a  vibrational  degree  of  freedom.  You could  also solve it  as  a  translational

degree of freedom in that sense actually you say that the entire molecule or the inter

activated complex as it is moving across the transition state.

And that translational degree of freedom you take into account, and you will  get the

similar answer you will get the same (Refer Time: 27:31) equation k B T by h with the

multiplied by all this thing. But they are actually do one degree of less in the translational

degree of freedom we can actually give you problem set where you will be asked to

derive it in a step by step. And then what you see here is that you can get an AB dagger

and this AB dagger of the statistical properties of this AB dagger will control everything,



everything in the sense if you can know the geometry of the molecule, you can actually

calculate the partition functions. And then you can calculate the rate constant and that is

the entire essence of the transition state theory.

And then we give an example for structure less molecules like a hard sphere molecules

collision and ensure that it  right. Away reduces to the expression for the bimolecular

collision theory. And then we said that for any transition state for a very complicated

system, there you can think that there is a specific orientation for the transition state. So,

there is a geometry factor involved and that geometry factor pushes the requirement that

it is connected to an entropic factor. So, the entropy actually is decreased because you are

going from more random set to a more ordered state. And that accounts for the why

actually you overestimate the reaction rate constant when you do it in a collision theory

experiment a collision theory way.

So, you can actually meet the correct energy requirement, but you may not be able to

meet the correct orientation factor because there is no way you can actually think about

the orientation form a hard sphere model. Because these are structure less. But you can

incorporate  into  the  transition  state  theory, and you can  physically  interpret  it  as  an

entropic factor.

So, in the in the next set of lectures, we will see that how one can actually think about so

this  is  a  basically  a  transition  state  theory  developed  for  by  molecular  reaction,  but

similarly  we  could  actually  develop  it  for  unimolecular  reaction.  But  again  for

unimolecular  reaction,  we  discussed  the  Lindemann  hypothesis  which  talks  about  a

bimolecular  collision  that  precedes  a  unimolecular  reaction.  And then  this  energized

molecule in the unimolecular reaction and gives rise to the product.

But we will  see if  we can apply the similar  transition state  concept or the statistical

concepts to understand to get a derivation for expression for the rate constant. Also as a

final note as we discussed that the transition state exists at a saddle point, it is not always

true because there are many sophisticated version of this transition state theory which

basically talks about the trajectories for going from reactant to product. And then there in

the detailed quantum dynamical conclusion shows that there could be some trajectories

which actually come back on the near the transition state region.



So, you may if you calculate at the number of trajectories at the saddle point, you may

not get the correct answer because actually you might have a recrossing a near the saddle

point. So, they are actually you talk about a position of the transition state to be the

position where the number of recrossings are minimum. So, this is called a variational

transition state theorem. And I am not going into the details into that.

Secondly, this transition state theory when you can we derived it as a motion on the

potential energy surface and this is just one version of the transition state theory. There

are also many other versions and this  version as I  said that it  is  known as activated

complex theory, because we talked about a complex. But these complex if you remember

that  this  is  not  a  stable  complex,  because  you  have  a  barrier  along  the  reaction

coordinate. A complex means which is stable in all degrees of freedom along all degrees

of freedom meaning reaction intermediate will be something like which has a minima

even along the reaction coordinate. And so these are basically the transition state going

from  say  a  reactant  to  a  bunch  of  reactant  to  a  bunch  of  products  and  this  is  an

intermediate.

So, in some sense we although we used the same concept that I have a reactant and d t

which  is  in  equilibrium with the  intermediate,  and we use the  same pre equilibrium

constant pre equilibrium concept for trani for development of transition state theory. But

there you have to be very careful this is actually a transition state this is not exactly an

intermediate and which is aligned at the minima and all other direction, but at a maxima

along the reaction coordinate.

So, it  is not really  a complex,  so that  is why this  activated complex theory and this

named complex is little bit misnomer. And thirdly which is most important this location

of the transition state the way we derived it is right at the saddle point or you can think of

it  is  at  a  particular  point  where  actually  there  recrossings  are  of  the  trajectories  are

minimum, but the point here is that it has a very precise location.

Now, you could actually  cast  the entire  problem instead  of  the say coordinate  space

energy  versus  coordinate  space  to  a  face  spaced  problem  where  you  represent  the

momentum and a position. And there also you represent the transition state as a form. If

you  have  a  point  in  the  first  phase  which  means  actually  you  are  simultaneously

specifying the momentum and the position with absolute precision which means you are



violating  the  uncertainty  principle,  which  means  actually  transition  state  theory  is

inherently a classical theory. And this point was made by Wigner and who did all this

classical canonical partition function derivation which also we did not derive. We just

derived the adding model which is not very rigorous model, but it is a correct model in

the sense that ultimately at the end of the day the Wigner’s model with all this reversed

derivation also gives you the similar expression. 

And the transition state theory had many drawbacks. And many more discussion as we

just said that the variational transition state theorem. There are also tunneling effects in

the sense that when you go from reactant to products, you may actually tunnel through

the  barrier  and  at  low temperature  this  tunneling  can  contribute  significantly  to  the

reaction rate constant, but those details we are not going to discuss in this course. So, we

will just stop our discussion on potential energy surface and transition state theory here.

Thank you.


