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So,  let  us  now check  how this  equation  which  we rewrite  for  the  general  transport

behavior takes the form for individual cases. Let us first talk about the heat transfer.

(Refer Slide Time: 00:32)

Now, the equation for heat transfer of the flux for heat transfer which is dependent on z

is given by Fourier’s law and we know that Fourier’s law is basically the flux will be

dependent  on the  temperature  gradient.  So,  I  will  have some term like  del  T, del  z,

special gradient of temperature and times the constant with the negative sign and that

constant  we write  as kappa.  So, this  is  the Fourier’s law for heat  conduction,  where

kappa is known as the coefficient for thermal conductivity.

Now, using the relationship which we developed for J z the question is, how can we

actually get mathematical form or some formula for kappa? Now, let me just rewrite the

value of J z. So, it is one third minus one third average velocity times the mean free path

and times the number density multiplied by the quantity that is being transferred and

divided by special derivative.



Now, here what is q? Now, q is basically  the amount of energy, because it  is a heat

transport carried by every molecule. So, it is a basically heat transport per molecule. So,

q is nothing, but suppose per molecule, I am just writing it as epsilon which means it is

nothing, but the total energy. 

So, suppose if U is the average energy carried by one (Refer Time: 0:2:26) or U bar or

something like you can write, it is U bar divided by the, Avogadro number. So, that will

be the energy carried by each molecule on average. Also, we see that this derivative this

partial derivative with respect to z, the reason we are writing partial derivative, because it

can also vary temporally and we will see a special case where actually we have, have the

quantity which is varying not only specially, but also (Refer Time: 0:2;56) whenever we

discuss diffusion.

So, in this case the instant the number density usually does not change, because when

you con consider heat conduction. So, it is a conduction phenomena, not the convection

phenomena. So, for thermal conduction, so it is a Fick’s law for thermal conduction. So,

conduction by definition means that the molecules or the particles does not move rather,

actually in the molecular which will be deal the (Refer Time: 0:3:25) and at the same

position and they transfer the heat to the neighboring molecule and that is how the heat

conduction works. So, the instead of the number density does not change with transistor

change especially. So, there is no density gradient.

So, I, we can actually take it outside the differential and. So, it will be nothing, but del q

del z as we said q is nothing, but average energy or you can say internal energy. So, del q

del z will be nothing, but 1 over N A del U del z. Now, you see here you can actually

replace it minus one third v average lambda n star and then one over N A. 

We can write del U average del z, but see here that we have in the original definition of

Fourier’s law, del T del z. So, we have now del U del z, so we can easily convert it. So,

we will take a del U del t we can write the differential like this we know that if I have a

function like this let us say del f del z, I can actually write it as del f del x into del x del z

and  we are  going  to  actually  use  the  same formula.  So,  lambda  into  n  star  1  over

Avogadro number and we are writing it as del U del T into del T del z.

Now, you see what is this quantity del U del T, it is basically change in internal energy

per unit temperature, so this is also internal energy per mole. So, this is nothing, but the



heat capacity and heat capacity per mole, because we said that U, it is U bar, it is average

energy per mole. So, what we get is nothing, but 1 minus one third v average lambda n

star C v bar by C v bar I mean that heat capacity per mole divided by the Avogadro

number into del T del z and we see this entire quantity is kappa. 

So, kappa is nothing, but average velocity times there is a one third, one third of average

velocity times the mean free path times the number density times the C v bar divided by

the Avogadro number. So, thus we see that how we can get a very handy expression for

the coefficient of thermal conductivity using the fundamental relation that we derived for

any transport phenomena.

And, now we will  see for thermal  conductivity the Fourier’s law is there if this  is a

phenomenological law and similarly for say mass flow which is diffusion we are going to

discuss a diffusion later. First we can actually  discuss let  us say, viscosity. Now, for

viscosity there is a relation and it is known as Newton’s law for this viscosity.

(Refer Slide Time: 07:02)

So, let us see the formula, Newton’s law for viscosity. Now, before I write down the law,

let  me actually  tell  you what,  what  is  transferred  in  when you talk  about  viscosity,

suppose again along z axis I have several layers which are actually separated by the

distance which is equivalent to the mean free path now the question is. So, this is along z

axis. Now we also have molecules moving in the x and y direction.



Now let us say this is x direction, now what is transferred across the z direction or along

the z direction is the x component momentum. So, that is a little bit difficult to perceive

in the sense that it is the x component momentum that is being transferred. So, what we

say here is that, we are talking about a gradient along z axis.

So, it will be still a partial derivative with respect to z, but the quantity here is that how

the v x is changing and if you remember that if that changes, like suppose a fluid is

flowing you have seen this kind of picture probably and then we say that due to friction

suppose this is the wall of the container and then we say that the layers of the fluid which

are close by here will have a very slow velocity than the layer, which are at the center.

So, the sometimes actually it is written like the, fluid actually flows like this, the reason

is, just because of the fact that the x component momentum has a gradient along z. So,

this is z and this is x. What is the Newton’s law? So, Newton’s law is again some flux

which is the viscosity equation which is a function of z and that would be negative of the

gradient of the momentum which is nothing, but m into v x, m is the mass for each

particle, del z and times you have eta.

So, eta is known as the coefficient of thermal coefficient of viscosity. Now, although it is

a momentum graded usually in Newton’s equation the mass is not written. So, we will

have to introduce a quantity mass and then we can easily connect it to this equation and

then figure out what is eta in a similar way.

Now, let us just write it what is the z? It is rather straight forward the viscosity equation.

So, it, it will be nothing, but in our notation it is minus one third you can go back and

have a see have a look. So, it is minus one third v average lambda and then you had del n

star and q and then, we can just write it like this del n star into q and del z.

Now when the fluid is  flowing in this  case also what  is  happening at  the layers are

basically parallel to each other and that is why there is no turbulence in the flow and

these kind of liquids are known as Newtonian fluids and then what happens here is that

as the fluid flows only the momentum gets transferred. So, we can say that as before just

like the thermal conductivity here also the number of particles are not changing. So, that

n star we can actually take it out of the differentiation also in this case q is nothing, but

the momentum so, m into v x, the x component of the momentum.



So, we can readily see that it will be minus one third v average lambda and I have n star

and then it is del q del z, but remember that q is also m into v x. So, ultimately the m also

comes out because it is just a constant, it is a mass of the mass of each particle. So, you

have del v x del z. Now we can easily compare, but before comparing I will just make

one more simplification. So, it is minus one third v average lambda and then you see that

n star into m, n star is number density times mass, so that we write as rho or basically the

mass density. So, that is why I did not use the rho notation for n star into q in the earlier I

mean earlier pages.

So, now we can compare and you can get a expression for the coefficient of viscosity or

viscosity coefficient. It is nothing, but one third v average and you have lambda into rho.

So, that we get another expression for another quantity. So, which is the coefficient for a

viscosity or a viscosity coefficient.

So, this is a viscosity coefficient. Now, we will talk about diffusion, now diffusion is

very interesting and it, it is a very- very well studied a phenomena again the, what the

treatment  we  are  doing  for  diffusion  is  a  very  very  simplified  phenomenological

description. Now for diffusion also just like, for thermal conductivity we had Fourier’s

law, for viscosity we had our momentum transfer we had Newton’s law, for diffusion we

have Fick’s law.

(Refer Slide Time: 13:14)



And this law will first write it as a instead of calling it as a Fick’s law will call it as a

Fick’s first  law of diffusion.  There is  a reason why I  am calling it  as a  first  law of

diffusion. Sometimes, sometimes we write it as a Fick’s law of diffusion, sometimes we

write it as a Fick’s first law of diffusion.

So, that says the quantity in this case the flux which is basically the particles itself that is

equivalent to the concentration gradient. Now, this is a pretty straightforward in this case,

because if you just compare with our generalized equation which is minus one-third v

average lambda del n star q del z and remember that in this case q is just nothing q is 1,

because it is the particles itself how the n star is changing. So, you can readily figure out

what is a D and coeffi diffusion coefficient comes out to be one third v average into

lambda which is a very very straightforward.

Now, the interesting situation will happen when we say that this quantity which is they

said.  So,  that  also  is  varying  which  time  why  this  happens,  because  among  all  the

examples we told so far this is the only example where we talked about the n star itself

has a gradient. So, basically and you the particles are basically moving or the molecules

are moving Now we can think that as suppose I had a high concentration region and I

have a low concentration region and particles are moving from high concentration to low

concentration.

Now, what  will  happen over  time  is  that  as  the  particles  are  being  moved the  high

concentration or the concentration in the high concentration region will fall down and the

concentration in the low concentration region will increase. So, basically this del n star

del z that will be time dependent itself. So, n star has a time dependent or the basically

the concentration itself has a time dependence.

Now how will you incorporate this time dependence, now there is a very easy way to

incorporate it suppose again we will consider two layers here, suppose this is one layer

which is let us say at a position along z arbitrarily, I am calling it as z and there is another

layer which is at position let us say z plus delta z.

Now, the question we are asking is that how many molecules are basically accumulating

how  that  how  this  n  star  is  changing  with  time  that  we  can  easily  calculate  by

considering  what  is  the  net  flux basically  changing for  the  bottom one and net  flux

changing from the top one, and then if we take the difference from that actually we can



calculate how many molecules are getting accumulated in this region in this volume,

which I have shown as a rectangular volume.

So, now the thing is that that you can easily calculate. So, how do you calculate it, let us

do it very systematically.

(Refer Slide Time: 16:56)

So, let us say what I am saying here is that I want to calculate the delta n which is the

delta n star, because we are using n star notation per unit time, now what that it will,

what it will be. So, suppose in this particular volume now again, so instead remember it

is a density.

So,  I  have  to  divide  again  I  will  first  calculate,  suppose the  surface has  some area,

suppose the area is A, for this as well as for this, the area is A and then what we are going

to calculate, we know the flux of flux is number of molecules changing per unit area per

unit time.

So, suppose in delta t time the flux basically changes by this amount. So, right now I am

writing z t  as a function of both z as well  as t and if  this is the flux the number of

molecules which are entering this area. So, per unit time it will be nothing, but times the

cross sectional area because per unit  time is already there.  So, what we are going to

calculate is changing the density per unit time.



So, this is basically the amount which is being get and divided, we also have to divide it

by the volume. Now the volume is nothing, but a times this length and this length is a z

plus delta z minus z which is delta z. So, this is the number of molecules which are

entering per unit time, because a per unit area we have multiplied here and then I have to

also make sure that number of molecules are also leaving through this surface, which is

the surface, which is located at z plus delta z, but there the flux is, at is slightly different

and at time t and into if I just, multiply the area. So, that will be the number of molecules

leaving that surface part unit type, because I am multiplied by already the area.

So, then if I divide by the volume, so that is basically the number of molecules leaving

this total volume, so that you can easily re organize and you can see that this a cancels in

the numerator and denominator. So, what will be left to it, is basically the flux at z, sorry

it will be flux at z and divided minus flux at z plus delta z divided by delta z.

Now, of course, you can now approximate that these delta z which we have chosen is

much, much small, so in the sense that the limit delta z tends to zero. Now this quantity

becomes  a,  by  definition  its  basically  the  derivative  of  the  flux  with  respect  to  the

position and also to write it consistently we are writing the z, sorry z as a function of z

the position as well as time here.

So, in that limit we can write that this change which we calculated is nothing, but the

differential change per unit time is basically the time derivative of the concentration and

that is nothing, but the special derivative of the flux.

Now if you note carefully that by definition suppose what is definition of d y d x, we just

write it that it is the value of y at x plus delta x minus value of y at x divided by delta x in

the limit delta x tends to 0. In the center can you see that there is a negative sign, because

I am talking about z at a position z plus delta z, but with a negative sign. So, it should be

there should be a negative sign here, but we know that this thing is nothing, but the

negative gradient special gradient of this quantity J, but J for J already we have the Fick’s

first law which is nothing, but this, so you already know.

So, let us just put it back, so what we will have is that there is a minus D into del n star

del z, n star depends on z as well as t, we are just writing it there very explicit, so what

we  get  ultimately  the  time  derivative  of  the  particle  density  is  equal  to  the  second



derivative of the particle density and this is basically the second derivative in space. So,

this equation of this law is known as Fick’s second law of diffusion.

So, Fick’s first law actually talks about connects actually the coefficient of viscosity, I

mean basically says the flux as a function of spatial gradient, but as time progresses the

flux  itself  changes  because  the  concentration  gradient  and the  concentration  itself  is

changing with time, because as the molecules move the concentration must change with

time and so, the concentration gradient changes which means the flux itself changes and

so, to incorporate that we figured out it is nothing, but the very nice equation that the

concentration gradient with respect to time is nothing, but the second derivative of the

concentration with respect to space.

Now, this  is  a  very  important  equation  in  hydrodynamics  and  it  has  a  lot  of  like

applications, and one interesting analogy although this has nothing to do with this course

is  that  the  time  dependent  Schrodinger  equation,  which  is  actually  the  Schrodinger

equation. Schrodinger equation means it is a time dependence Schrodinger equation.

So,  when you write  it  you will  see that  the  time derivative  of  the wave function  is

basically  the gradient of the wave function.  So, it  is basically  the kinetic energy and

potential energy and kinetic energy has if you write it more explicitly. So, it is basically

the Hamiltonian,  and then you can write the Hamiltonian as minus H bar squared by

twice m and del squared.  Now del square is nothing, but the second derivative with

respect to space and some potential energy acting on psi.

Now, if you look at this part like the on left hand side I have a time derivative and on

right hand side I have actually double derivative with respect to space. So, that is why it

is; of course, known as a Schrodinger equation, but Schrodinger equation is not exactly

an  wave equation,  because  what  you do in  wave equation  when you are  talk  about

suppose you just take a classical sinusoidal wave, and if you talk about the amplitude as

say psi you will figure out that if you do the space derivative and a time derivative and

use the definition of the velocity of the wave, then you will find that that wave equation

will have something like del a H del to psi del t 2 will be equal to del 2 psi del x 2 with

some production and constant it will be one over v square in this case yes.

So, v into x, yes, so that that is how it will come, but or it will be the one over v square in

the other side, so it is a time derivative. So, then what you see here is a very interesting



thing that here actually the on the either side we have double derivative in time and

space.

So,  this  is  the wave equation,  but  Schrodinger  equation  is  actually  strictly  speaking,

although it is a wave mechanics, because we talked about the wave particle duality and

particles also have wave nature and from that it the interacting stemmed, but I mean like

mathematically the Schrodinger equation is more close to the fixed second law, where

actually the first derivative in time connects it to the second derivative in space. So, so

this  is  just  to  give you a feeling like how things are all  the way talking about  very

different physics here, but how things are connected.

So, so far whatever we have done is, basically let me go back we derive an equation for

the generalized transport and then using this equation we said that we can always define

a flux that is the most important quantity and this flunks depending on the particular

phenomena, you are describing if the phenomena can be viscosity, the phenomena can

the diffusion, the phenomena can be thermal conductivity and you can actually get a

coefficient phenomenologically and using the analytical expression that, we derived you

can actually get a mathematical formula for those coefficients; like we derived it for the

viscosity coefficient,  like we derived it for the thermal coefficient kappa and also we

derived it for the diffusion coefficient and particularly for diffusion. We found that the

this quantity that del n star into q del t the n star itself sorry del z the n star itself is

changing here.

So, what it means that the as it changes especially things are moving from one side to

another side which means over time also you will have dynamics and that is what we

figured out here and we found that the very important relation that the first derivative of

the  concentration  with  respect  to  time  is  nothing,  but  the  second  derivative  of  the

concentration in space.

So, we will stop the discussion here and in the next section we will be talking about the

transport  properties  of  ions  which  is  slightly  which  we  will  use  slightly  different

treatment there, because for ions there are a lot of electrostatics involved and then you

whatever  we have studied  this  diffusion  coefficient  of  thermal  conductivity  although

thermal  conductivity  is  not  very  necessary  for  our  discussion  and  viscosity.  So,



particularly diffusion those will be important when we will discuss the reaction dynamics

in solution.

So, those things will be useful and there actually we will also talk about a little bit about

the reaction between ions using the conductivity of the ionic, not ionic conductivity, its

basically transport of ions, a movement of ions in solution and also we will see at the

reaction dynamics section. We will discuss about the electron transfer reaction, but from

a very different point of view from the potential energy surface point of view which is

nothing, but Marcus theory of electron transfer.


