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Welcome back to the course of Chemical Crystallography. In the previous lecture, we

started understanding the direct methods, different mathematical roots to determine the

phases.
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So, in during that discussion, we just discussed about the expressions for normalized

structure factor which is you should remember, we discussed it as we wrote it as, E H

equal to 1 by sum over j equal to 1 to N f j square root of that and sum over j equal to 1

to N f j exponential 2 pi i h x j plus k y j plus l z j.

So and then we went on to define the corresponding unitary structure factor, U H you

remember that when we write U H it actually means we are talking about a reflection of

miller indices h, k and l. So, we wrote that U H is equal to the mod of F H square divided

by the sum of j equal to 1 to N f j. And then we understood that the value of U H varies

from 0 to 1 and further we could write that E H square is equal to N U H square. So, we

could  write  an  expression  between  the  normalized  structure  factor  and  the  unitary

structure factor. So, from that point we went on to explain two different methods.
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The sigma 1 relationship which we then used to draw the Bragg-Lipson plots and try to

identify the electron density regions, where the electron density is maximum for a given

reflection and it is a family that is 1 0 0 and 2 0 0 like for example, if it is h k l, then 2 h 2

k 2 l type of reflection, where should the more intensity region or more electron dense

region should appear. So, what we saw that the regions where we have the overlap of

maxima regions of the most probability of finding the atoms and electrons close to those

regions in the unit cell. And this could lead to a reasonable structure solution. When we

do it in 3-dimension and do it for a large number of sets of planes which are parallel and

intersecting set of planes.
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So, then we all went on to talk about the triplet relationship where if you know the that

the E H and E K that is the normalized structure factor for two different reflection, two

different planes are both high. And we can identified those planes as H and K and they

intersect at a given point. So, we understand that the point of intersection of these two

planes, which give large values of E would have the concentration of electron density at

those regions where these two planes in depth.

So, then the plane which contains  these large density points,  which joins those large

electron density points are actually the plane which is nothing but h bar, k bar in two

dimension or in case of h k l; it could be h bar k bar l that plane which then contains the

large electron density region. So, from this relationship one could conclude that E H bar

K bar will also have the large intensity. So, all these understandings give us an indication

that how the large values of E can lead to the under gaze of the actual location of atoms,

but it only talks about the closeness or a proximity of those atoms to these planes.
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The direct methods are a list of methods, a large number of different methods which we

will discuss a few of them have been used for a long time. So, this is most widely used

method for direct determination of phases of reflections through various mathematical

reasoning and understanding. Between 1930 and 1965, many attempts were made for

direct phase determination like the Bragg-Lipson and plot and so on. The most important

introduction or discovery in this region is by Harker and Kasper, who introduced the

Harker-Kasper inequality to relate the phases of individual reflections.

So, the reference here is given for Harker-Kasper inequality. So, in for using Harker-

Kasper inequality one can write that F h k l square is less than equal to F 0 0 0 square,

where F 0 0 0 is the amplitude of structure factor at the reciprocal lattice origin. This is

nothing but equal to the total number of electrons, present in the unit cell. So, we write

this  equation  as  equation  number  1.  So,  this  expression  can  be  then  modified  for

centrosymmetric structures as the following, which we can write as the equation number

2; F h k l square is less than equal to F triple naught into half of F triple naught plus half

of F 2 h 2 k 2 l and this we write as equation number 2.
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So, now if we assume that small u h k l is equal to F h k l by F is 0 0 0. And then we

divide the equation number 2 by F square 0 0 0, one can write that F h k l square by F 0 0

0 square is less than equal to half plus F 2 h 2 k 2 l by F 0 0 0 square into F 0 0 0. So, we

can write it as u h k l square is less than equal to half plus half of u 2 h 2 k 2 l and we

write it as equation number 4. If both the magnitude and sign the positive sign of U h k l

square is unknown is known, then the phase of U 2 h 2 k 2 l remains to be the only

determined and only parameter that has to be determined.

So, thus you can write mod of U h k l square is less than equal to half plus minus half u 2

h 2 k 2 l, as equation number 5. So, if both of U h k l and u 2 h 2 k 2 l that is this and that

are large, then positive sign on the right hand side is valid to make the inequality work.
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So,  here  is  one  example  of  this  set  of  values  for  phase determination  by  inequality

method. Here what we can see is that if I have the values for u h k l square listed in the

first column and the calculated u 2 h or observed u 2 h 2 k 2 l square values are listed in

second column.  Then the  phase  is  if  it  is  the  is  positive,  then  you get  the value  of

inequality on the right hand side is 0.6 and the other hand if it is minus, you get it as 0.4

what we should keep in mind that we are talking about the relationship, where u h k l

square should be less than equal to half plus minus half of u 2 h 2 k 2 l.

So, we have various values of u h k l and u 2 h 2 k 2 l from the data. And we are trying to

find out  what  should be the phase of u  2 h 2 k 2 l  reflection  compared to  u h k l

reflection. So, if these are the values which are listed here for u h k l and if these are the

values for the reflection u 2 h 2 k 2 l; then by selecting plus or minus we get different

sets of values for the right hand side, these are the values for the right hand side.

So, now we can see that if this is the condition, these are the values then u 2 h 2 k 2 l

must be positive, must have a positive phase to have the inequality valid. If it is second

one it also must be positive, but in case of third one the phase can be both positive and

negative. Similarly, for the next one and that following this should be positive and u 2 h

2 k 2 l could again be a positive or negative for a smaller value of u h k l like this.

So,  this  indicates  that  there  are  indications  of  possibilities  of  phases  of  different

reflections related to one given reflection u h k l.  So, to obtain a definite result,  the



reflections must have amplitudes that are large fractions of F. So, the larger the value of u

h k l, it is it becomes easier to assign the correct phase of those reflections.
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But unfortunately, the reflections with large huge U h k l is less in number in general for

all data sets. And hence this method becomes less useful for complex structures with

large number of atoms. Further, U h k l which is dependent on F h k l is dependent on sin

theta and hence at high angle that is at sin theta U h k l is generally small and cannot be

used for phase determination purposes; that means, the data that we collect is up to say

56, 50 or 60 degree to theta at U h k l values fall off rapidly at higher angles and then

those reflections will not have a significant value of U h k l and we will would not be

able to determine the phases correctly 

So, as the value of F h k l or U h k l reduces with sin theta, F h k l by F triple naught falls

so low that the phase determination becomes impossible. So, to overcome this, what we

do is, we assume that all the scattering power of an atom is concentrated at a point, so we

consider it as a point atom. And represent the F for such assumption as F atom. And then

this assumption leads to the fact that the scattering power of F is independent of sin theta

and is a constant for all values of sin theta by lambda.
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So, with this understanding if we try to plot, the scattering factor f j with sin theta by

lambda. In general case f j should fall like this with sin theta by lambda that is for f for

actual atom, but by considering the point atom the value of f should remain constant that

is f point atom should be equal to z for all values of theta. So, in this case we can write F

equal to sum over j equal to 1 to N f j e to the power 2 pi i h x j plus k y j plus l z j as

equation number 6.

And then if we assume that the structure is consisting of only one type of atom, then the

scattering factor f can be taken out of the summation and we can rewrite it as j equal to 1

to N e to the power 2 pi i h k j plus k y j plus l z j as equation number 7. So, one can then

write that F equal to small f multiplied by E, where E is the sum of all exponential term.

So, now as we know that the scattering factor f is equal to f 0 e to the power minus B sin

square theta by lambda square, for real atom. We should write f equal to Z for point

atom. So, we can then write that f point by f real is nothing but Z E divided by E into f 0

e to the power minus will be sin square theta by lambda square; so this is my equation

number 11. So, from here we can write that F point is equal to Z by f 0 e to the power

minus B sin square theta by lambda square into F real that is my equation number 12.
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 As most of the structures contain more than one type of atoms then the same expression

has to be changed in this manner, F point is equal to sum over j equal to 1 to N Z j

divided by e to the power minus B sin square theta by lambda square into sum over j

equal to 1 to N f j f o j into F real. So, we write it as equation number 13.

So, now we will define again the unitary structure factor U h k l as F h k l point divided

by F 0 0 0, which is equation number 14. So, using equation number 13 and that j equal

to n Z j is equal to F triple naught, we can write U h k l is equal to F h k l point divided

by e to the power minus B sin square theta by lambda square into sum over j equal to 1

to N f o j or we can further simplify and write U h k l is equal to F h k l point divided by

sum over j equal to 1 to N f i f j, where this f j includes the thermal motion that is B; so

we write this equation as 16.

So, as this U actually represents a structure factor h k l. So, this must have the same

phase and the value of U should range from 0 to 1, so that is the restriction on values of 0

to 1 and the U h k l would represent the structure factor with structure factor F h k l with

the same phase as that of U.
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So, this indicates that the complete in-phase scattering can occur only when the atoms

are located at the maxima of Bragg-Lipson chart, in three dimension as well. Although

this will not actually locate at the positions that is the coordinates of the atoms, but we

will reduce the number of possible positions or sides of those atoms and we will be able

to so identify the more electron density regions in the unit cell.

Generally, U close to 1 are very less in number, which we have already indicated in the

previous few in slides, but large values of U allows us to use more constraints on atom

positions. We know that the information contained in a reflection is determined by the

intensity of the reflection, relative to the average intensity of neighboring reflections. So,

it is obvious that U s are large close to 1 for reflections with higher value of sin theta

compared  to  F  for  many  low  angle  reflections  with  low  sin  theta.  So,  this  is  the

possibility.
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So, to address this question that which reflections are most important we need to arrange

the reflections with decreasing value of module that is the absolute value of U. This can

be done by summation of U over all the atoms. So, one can do this sum as U h k l is

equal to 2 times j equal to 1 to N n j cos 2 pi h x j plus k y j plus l z j, this is equation

number 17; this is valid for centrosymmetric structures. You can have only one cos term

that is valid for centrosymmetric structures only. Where we can also write, n j is equal to

f j divided by sum over j equal to 1 to N f j. So, this is the scattering power of the jth

atom.
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As n j is a function of sin theta, we assume all atoms are same which is not inappropriate

for light atoms structures having only carbon, nitrogen, oxygen and hydrogen’s in the

structure. So, we can further write that n j is equal to 1 by N. Similarly, the expectation

value of F square is equal to sum over j equal to 1 to N f j square. So, the expectation

value of U square is given as sum over j equal to 1 to N n j square. So, the RMS value of

U that is U RMS is nothing but equal to sum over j equal to 1 to N n j square. So, for

light atom structures with similar Z, we can further write that U RMS is nearly equal to 1

by square root of N.
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So, as the average value of U drops well below the value needed for using the inequality

to work for structure determination with large N. Therefore, we need better methods to

determine the phases based on certainties and then probabilities. To overcome that Karle

and Hauptman in 1956 introduced the concept of normalized structure factored where E

h k l was represented as, E h k l square is equal to U h k l square by expectation value of

U square; this equation is number 24. So, the E values are now allow the normalization

of all classes of reflections to a common basis.



(Refer Slide Time: 30:03)

So, when we combine these two equations 24 and 21, we can write that E h k l square is

equal to U h k l square divided by epsilon sum over j equal to 1 to N n j square. And E h

k l square as equal to mod of F h k l square divided by epsilon sum over j equal to 1 to N

f j square, where this epsilon is equal to an integer which is generally 1, but may be

different for different space groups. So, for example, in case of P 2 1 by C space group,

epsilon is equal to 2 for the h o l set of reflections and 0 k 0 set of reflections and epsilon

is equal to 1 for all other h k l.


