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Welcome back to the course of Chemical Crystallography. In last 4 lectures, we have

learnt  some of  the  basic  aspects.  So,  what  we learned is  to  remember  a  few set  of

numbers. For example, we have discussed about 7, which indicates 7 crystal systems. We

have learned about 14 Bravais lattices, 32 point groups. And we just indicated that there

are 230 space groups which utilizes these 7 crystal systems, 14 Bravais lattices and the

symmetry elements that are present in 32 different point groups and in addition we have

two types of symmetry elements screw axis and glide planes.

So, now as I indicated the number 32 is restricted simply because the crystallographic

symmetry  elements,  the  principal  axis  of  symmetry  which  we  identified  as  n  has  a

restriction of 1, 2, 3, 4, 6 only. And there is no say chance of having a 5 fold symmetry.

So, today we will start by doing a simple geometrical derivation to identify why we do

not have a 5 fold symmetry in three-dimensional lattice.
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So,  what  we know is  in  a  crystalline  system in  a  periodic  arrangement  of  atoms or

molecules, we have two atoms located at unique edge length; and those two atoms are

repeated in along x, y and z following a particular translational symmetry. So, if we take

two lattice points for example, two lattice points P and Q are two positions of two objects

at a distance of unit cell length a. Now, if we rotate the line P Q in the left side so that we

end up reaching another lattice point Q prime somewhere else in the lattice.  And the

angle that we travel is designated as 2 pi by n; n signifies the n fold rotation of about a

particular axis, so that we can reach another lattice point equivalent to Q at Q prime.

Similarly, Q P we are rotating in the opposite direction; and reaching another lattice point

similar to that of P prime by rotating about the same and a 2 pi by n. So, obviously, the

distance from Q to P which is l should be some integral multiple of the unit cell edge

length a, because these two points P prime and Q prime are representative of two lattice

points at a given distance. And as we know P and Q are at edge length a, so the distance

between P prime and Q prime has to be integral multiple of a.

So,  now  let  us  draw  a  perpendicular  from  P  to  P  prime  Q  prime,  and  another

perpendicular from Q to P prime Q prime, and we identify those two points as M and N.

So, now, the distance m, n is nothing but a; distance M Q prime is x, and N Q prime is

also x, which indicates that l equal to a plus 2 x. So, now the point here is 90 degree



which indicates the outer angle here is 2 pi by n minus 90. The same is valid on the other

side.

So, now if we consider a particular triangle P Q prime M, in that particular triangle P Q

prime N M, we can write sin 2 pi by n minus 90 equal to x by a, because P Q prime is

also a, is that right. So, now, if we try to see what is the value of x, x equal to a sin 2 pi

by n minus 90. So, now, from the expression that we have on the left hand, on right hand

side here, l equal to a plus 2 x, which means 2 a sin 2 pi by n minus 90. So, if I now

rearrange, l by a equal to 1 plus 2 sin 2 pi by n minus 90. So, now, this l by a from this

expression turns out to be m which is an integer. That means to have an integral value of

this l by a the right hand side which is 1 plus 2 sin 2 pi by n minus 90 has to be an integer

which means this 2 sin 2 pi by n minus 90 has to be an integer.

Now, let us see what happens, we are going to write the values for n and corresponding 2

sin 2 pi by n minus 90. For n equal to 1, it is 2 pi minus 90 which means 270. So, n equal

to 1, the value of 2 sin 2 pi by n minus 90 turns out to be 2. For n equal to 2, this number

once again turns out to be 2; n equal to 4, this number turns out to be 0, if you see then

this comes out to be a non-integer. For n equal to 5 this number turns out to be 0.618.

And once again for n equal to 6 the number turns out to be 1. And any value for n equal

to 7, 8 or whatever, the number does not turn out to be non-integer. So, it is a non-

integer, so that indicates that in case of three-dimensional periodic systems, we can only

have values of n as 1, 2, 3, 4, 6, and not as 5 or anything higher than 5. So, this puts a

restriction on the number of principal axis that 1 can think of in crystallography.
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So, now depending on this understanding that how many different types of symmetry

elements are possible, let  us try to consider different two-dimensional lattices.  In the

previous class, if you remember, we have discussed about one-dimensional lattices; and

there were 7 of them. So, now, here we will talk about these two-dimensional lattices

which are five different types. So, when we say it is an oblique lattice the restriction is

like a not equal to b; and the angle between a and b gamma which is not equal to 90

degree.  So,  an oblique lattice should look like this.  When we say it  is  a  rectangular

lattice, it actually means a not equal to b, and gamma equal to 90 degree which means we

should draw a rectangle. So, the angles between the axis are 90 degree.

Now, the third type of lattice is a square lattice where a equal to b, and gamma equal to

90 degree, what we get is a square. The next one is hexagonal lattice where a equal to b,

and gamma is not 90, but it is 120 degree. So, in that case, the lattice would look like this

where the two edge lengths are same and the angle between the two is 120 degree.

Now, the last type of lattice is a centered lattice where a is in general not equal to b, but

gamma is equal to 90 degree; in that case what we see is we draw a rectangular lattice

and we have a centering at the middle. So, what does it mean that we have atoms at 8

corners or lattice points at 8 corners and at the center. So, this particular lattice is called

the centered lattice, f s centered lattice, one face is centered.



So, now before going into further details of two-dimensional space lattices, once we have

talked about lattice centering now if you remember I had asked you to solve a problem

by a tetragonal lattice does not have a tetragonal lattice does not have a face centered

lattice. So, let us try to understand why we do not have a face centered tetragonal lattice.
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So, suppose I am drawing a tetragonal lattice here. This is the tetragonal unit cell and

then I am putting corner atoms in red and placing them at all 8 corners. And then I will

draw the face atoms with blue  sorry;  we will  draw the face atoms using a  different

colour.  So,  this  is  a  face  centered  tetragonal  lattice,  but  as  I  say  a  face  centered

rectangular lattice does not exist. Before we go further let us determine the volume of

this lattice this is a. This other side is also a, because it is tetragonal a equal to b and not

equal to c. So, the volume of this lattice that we have drawn is equal to a square c.

Now, I want to extend this lattice on the right hand side and join it with the previous one.

This is the adjacent tetragonal lattice. And I will once again draw the corner atoms in red;

and the face atoms as it was blue we will add those face atoms here as well. So, now we

have two adjacent face centered tetragonal lattices. Now, see what I am going to do, I am

going to draw a different  lattice using green colour by joining the face atoms to the

corner  atoms and joining  the  atoms placed in  on  two faces  and then  the  green  line

indicates a new lattice.



So, now you see what has happened the green lattice has atoms at 8 corners and a lattice

and a lattice point or one atom at the center of this green lattice which means it is in the

body center of that particular lattice. Now, why should we consider this as the correct

Bravais lattice, let us see the volume of it. See the diagonal here is root 2 a. So, the edge

length that we have here is root 2 a by 2 which is a by root 2. So, the corresponding

volume of this green lattice is a by root 2 into a by root 2 into c, because the height has

not changed. So, what we have is half a square c. So, the volume of this green lattice is

half that of original red lattice which we had drawn at the beginning.

So,  to  explain  this  three-dimensional  figure  which  we  have  drawn as  face  centered

tetragonal lattice, it can be described as a body centered lattice having half volume. So,

when we have possibility of representing same crystal structure using a smaller volume,

we should use that as the basic lattice instead of the one which has a higher volume. And

this question arises every now and then when we try to index a crystal system. We should

always look at the unit cell parameters and the volume of the lattice that we are getting

from  a  crystal  data  and  see  which  is  giving  you  the  lowest  volume  with  highest

symmetry.

So, suppose if  there are choices  between two different  tetragonal  lattices,  we should

choose the volume choose the lattice which has the smaller volume. If we have a choice

between  two  different  symmetry  lattices,  then  we  should  choose  a  lattice  of  higher

symmetry than a lower volume. So, this is where we need to make a decision what lattice

should be chosen at the beginning of any crystal data collection.

So, in this particular case, what we saw is that tetragonal I has a volume which is half

compared to that of tetragonal f lattice. And hence we consider this as the Bravais lattice

tetragonal I. So, in these few lectures, what we have learned our basic aspects of x ray

diffraction we have talked about the different crystal  systems 14 Bravais lattices,  the

origin of 32 point groups. We have discussed about different symmetry elements like

screw axis, glide planes and things like that. So, in the future lectures, we will utilize

these  basic  concepts  to  draw  2D  space  lattices  with  their  corresponding  symmetry

elements,  symmetry  operations  incorporated.  So,  when  I  will  be  drawing  those  2D

lattices,  I will be using the symbols and notations that has been taught to you in the

previous lectures. So, it is used, it is going to be useful. If you look at the textbooks and

come prepared for the next lectures.


