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Welcome back to the course of Chemical Crystallography. In last few lectures, we were

discussing about the theoretical aspects behind the data reduction. As you already are

aware that a raw data which is nothing but a set of images which was recorded using

some two-dimensional area detectors. And those images contain the X-ray intensity from

the diffracted  beams coming out of  a  given crystal.  So,  whenever  a  diffracted  beam

meets the detector, it creates a signal there, and that signal is just the raw intensity which

has to be corrected for various factors as you have already learned that we need to do a

correction for the incident beam intensity, depending on beam intensity the diffracted

beam intensity will vary.

Then  we  have  learned  about  the  exposure  time  and  then  its  affect,  then  we  have

discussed about the Lorentz and polarization corrections in the previous class. And in the

previous class, we have seen that Lorentz and polarization corrections are must for data

collections using a refractometer, and use if you are using a crystal monochromator. So,

now we should concentrate on a different aspect on data reduction, which we call as the



absolute  scaling  and  the  effect  of  temperature  factor.  If  we  assume  the  atoms  are

spherical in nature, so with the assumption that the atoms are spherical, the scattering

factor of an atom that is f of an atom varies with sin theta by lambda in the following

fashion as we already know; f verses sin theta by lambda when it is plotted in terms of

Armstrong inverse unit, this corresponds to the value Z of the atom in concerned.

So, if it is carbon, so if we are plotting atomic scattering factor of carbon, then this point

is 6. So, as we know that if we have an atom in the crystal, and it is considered to be

spherical at any given temperature the atom has thermal vibration along X along Y and

along Z, so because of this thermal vibration the electron density is no longer spherical is

rather  diffused  over  a  three-dimensional  space.  So,  when  this  diffractted  when  this

electron  density  is  diffused,  then  the  diffraction  from  a  given  plane  having  several

diffused electron densities at different places will have a certain intensity of diffraction.

When the X-ray hits  the plane and gets diffracted,  it  will  have a certain intensity  of

diffraction.  And which temperature by reducing the temperature,  when the atoms are

more  confined  towards  its  nuclei,  the  electron  density  on  this  plane  is  more  tightly

bound. As a result the intensity of the diffracted beam at low temperature I L T will be

greater than I R T. So, this effect has to be incorporated in the expression for the actual

scattering factor f of any atom.
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It is very clear that at high temperature. These vibrations will be more significant and

hence  will  influence  the  diffracted  intensity  more.  And  also  this  thermal  vibration

depends on the mass m mass of the scatterer atom, because the heavier the mass lower is

the vibration, so for heavier elements thermal vibration is less, and for lighter atoms the

thermal vibration is more. And then also depends the thermal vibration depends on how

an atom is bonded in a molecule.

Suppose, if we have an aromatic ring with six carbon atoms with alternate single, and

double bonds, they are more tightly bound to each other, they have constraints in their

bond length  and bond angles.  As  a  result  the  thermal  vibration  for  every  individual

carbon ion aromatic ring is restricted. While if you have a an hexane chain having six

carbon atoms, they all have a fixed bond length, but they have a flexible bond angle

which can change and you can rotate the bond without breaking or making a new bond.

So, these bonds are more flexible as a result it is possible that these atoms can vibrate

mode freely compared to the other one.

And then in case of some groups like this which is a trifluoromethyl group. When you

have  three  large  highly  electronegative  elements  bonded  to  a  carbon,  these  three

electronegative elements repel each other that is electrostatic repulsion. Associated with

a thermal motion of this fluorines the electrostatic repulsion in between these fluorines

will result into a situation where it will look like there are multiple fluorines, connected

to the central carbon atom, because this group is vibrating in such a way that it is as if

doing is like a rotation. So, this thermal vibration makes the scattering from this type of

compounds very week very feeble.  And hence  we need to  take care of  that  kind of

thermal vibrations.
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So, the effect of thermal vibration is to reduce the scattering power of an element mostly

lighter  elements.  And  hence  the  diffracted  intensity  is  weak.  The  result  of  thermal

vibration is lowering of scattering factor which means,  if this is the scattering factor

curve  for  an  element  without  the  thermal  vibration,  the  same  atom  would  have  a

scattering  factor  varying  like  this  with  thermal  vibration.  This  variation  in  atomic

scattering factor this change or variation in atomic scattering factor is given by e to the

power minus B sin square theta by lambda square, where B is the B is equal to 8 pi

square mu bar square, where mu bar square is equal to the mean square amplitude of

atomic vibration. So, the actual f is equal to f observed multiplied by e to the power

minus B sin square theta by lambda square.
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So, if we try to plot E to the power minus B sin square theta by lambda square verses sin

theta by lambda in Armstrong inverse unit, we would get a straight line, when B is equal

to 0, when B is 2, we get a line like that. When B is 4 it is more severe. And when b is 8,

this decreases significantly. As a result the corresponding plot for atomic scattering factor

f with sin theta by lambda plotted in Armstrong inverse unit should look like this.

This top plot is without the thermal vibration that is when B is equal to 0, but then with a

increase in the value of B this curve reduces quickly that means, the atomic scattering

factor of the element reduces significantly with larger and larger value of B and so, so

that means on reducing the temperature we approach from higher value of B to lower

value of B. This is the direction of lowering the temperature T. So, when you lower the

temperature  the  mean  square  displacement  of  every  atom  decreases,  as  a  result  the

atomic scattering factor reaches its actual value when there is no thermal vibration. So,

this correction has to be incorporated for each and every reflection in a particular data,

when we are collecting at a given temperature. So, we need an estimate of this thermal

parameter B from the measurement.
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Now, we need to define we need to define. The average observed intensity corrected for

Lorentz and polarization factors that I rel is equal to the average of f relative square. So,

if you have an unit cell with N atoms then we can show that I absolute is equal to sum

over i equal to 1 to N f i square where is the theoretical average intensity. And this I abs

depends on the atoms present and number of such atoms present. It is independent of the

positions of the atoms.
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So, the ratio I abs by I rel should be defined as the scale factor to place the I relative

values on an absolute scale. But, we have few problems number 1 f i are not same. And

by means same that is not same over the range of sin theta by lambda it is dependent on

sin theta by lambda. So, I abs also varies with sin theta by lambda. This f i which is

coming here, because of the value of f being not constant over the entire range of sin

theta by lambda; it being changing with sin theta by lambda I abs also varies with sin

theta by lambda

So, to avoid this to avoid this we divide the Ewald’s sphere into small infinite shells such

that  the value of f  I  do not change within a  shell.  And the second problem that  we

encounter is that as we already discussed f i are all influenced by the thermal motion. So,

actually what we should write for I abs average as the sum over i equal to 1 to N f o i

square e to the power minus 2 B sin square theta by lambda square, assuming same value

for B of B for all the atoms.
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So, we can rewrite this  expression as e to the power minus 2 B sin square theta  by

lambda square into sum over i equal to 1 to N f o i square. So, now, if I relative is equal

to this scale factor C multiplied by I abs average, then we can write it as c into e to the

power minus 2 B sin square theta by lambda square into sum over i equal to 1 to N f o of

i square. So, we can rearrange this equation like this. I relative divided by sum over i

equal to 1 to N f o i square is equal to c into e to the power minus 2 B sin square theta by



lambda square. By taking natural level in on both sides, we can write l n I relative by

sum over i equal to 1 to N f o i square equal to l n c minus 2 B sin square theta by

lambda square.

So, now, if we try to plot, the left hand side as Y, and this as X what do we get, on y axis

we are plotting l n I relative by sum over i equal to 1 to n f o i square verses sin square

theta by lambda square like this. So, what would we get? Would we get, we would get a

straight line with negative slope. If we extrapolate that straight line to sin theta by sin

theta by lambda whole square equal to 0 that is at  0 degree angle of diffraction this

intercept would give us the value of l n c.

And the slope here will be equal to minus 2B. So, we can then calculate both the scale

factor and the temperature factor from this measurement. So, if you write this in this

manner, now I relative is equal to c I abs. So, I relative is nothing but mod of F relative

square is equal to constant c mod of F abs square, which means amplitude F abs equal to

1 by root over c F relative, which we can rewrite as k into F relative. So, we can establish

a relationship between the absolute stretcher factor amplitude with the relative stretcher

factor amplitude with a constant quantity k which is written as the scale constant.

So, this is how we can get the value of the absolute structure factor amplitude from the

relative values using scale constant for a given data. So, this method of scaling is applied

in a data reduction program and then we generate this plot which is called the Wilson

plot. So, the feature of an Wilson plot is supposed to be a straight line with negative

slope. If we are plotting these two quantities, and this straight line with negative intensity

should have all the reflections falling very close by this straight line like that.

So, this reflection should represent a linear distribution with a negative slope. If in case

we encounter with a data set where the intensities are scattered like this, and a best fit

straight line cannot be drawn that means, there must be something wrong in the data.

Probably you have not determine the unit cell correctly, and you are not considering this

required number of atoms inside the unit cell and so on. So, those corrections then need

to be checked those parameters need to be checked at the time of data reduction. So, this

is how we can handle a raw data. And try to process it for the next step which will be the

determination of symmetry whether it is having a centrosymmetric distribution or a non-

centrosymmetric structure or whether it has a two-fold or a mirror plane. 



So, these things we will discuss in the next class.


