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Lecture – 23
Bragg’s Law in Reciprocal Lattice and Origin of Systematic Absences

Welcome back to the course of Chemical Crystallography. In the previous lecture, we

discussed about the origin of reciprocal lattice, how to construct a reciprocal lattice from

a  direct  lattice  and  we  learnt  that  every  reciprocal lattice  point  in  reciprocal  space

represents a particular plane in the direct lattice. So, by doing this what we have done is,

we have constructed a reciprocal lattice from the planes that are having corresponding

miller indices hkl in the direct lattice. And then, towards the end, we will learn how to

construct  the  reciprocal  lattice  in  case  of  orthorhombic  system  and  how  to  get  the

corresponding reciprocal lattice parameters a star, b star, c star and the volume.

So, now we will try to construct the same. In case of monoclinic lattice, as you know for

monoclinic lattice, the angle between a and c is not 90 and this is called beta.
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So, I am drawing AC plane of a monoclinic unit cell. So, this angle is beta. So, now if we

drop a perpendicular from the origin to the plane which is parallel to C, this plane this

perpendicular  will  correspond  to  d  1  0  0.  In  the  same  manner  if  we  construct  the



perpendicular from origin O to AC plane here to the plane parallel to A axis is like the

distance is d 0 0 1 and then, the angle between the two normals is my beta star.

So, now if the angle on that other side is beta, then the angle here is 180 degree minus

beta which is same as this angle and this angle is also 180 minus beta. So, now OA

where I construct that as a and that as c OA is equal to a and OC is equal to c, then if we

want to write down the value of d 1 0 0 in terms of a and beta, this is d 1 1 0. So, we

consider this particular triangle and then, we can write d 1 0 0 at equal to a sin 180 minus

beta which means it is equal to a sin beta. Similarly d 0 0 1 is equal to c sin 180 minus

beta. We are talking about triangle here which is again equal to c sin beta.

Now, d 0 0 1 is perpendicular to 0 0 1 plane and d 1 0 0 is perpendicular to 1 0 0 plane.

So, the reciprocal lattice distance a star is nothing, but equal to 1 by d 1 0 0 and c star is

equal to 1 by d 0 0 1. So, now a star is equal to 1 by d 1 0 0 and d 1 0 0 is a sin beta. So,

a star is equal to a sin beta and correspondingly c star equal to c sin beta and obviously, if

since the direction b is perpendicular to both c and a b star is same as 1 by b as one seen

in orthorhombic system.

So, the angle beta star is equal to let us see that this is 180 minus beta, this angle is then

beta. In case of this figure, you have this angle and that as 90 degree. So, in case of this

quadrangle two angles are 90 degree. So, this is 180 plus beta. So, this angle is nothing

equal  to  180 minus beta  because  these  two angles  should  correspond to 180 degree

because the other two angles correspond to 180.

So, beta star  is  equal  to  180 minus beta.  So,  if  we try to  calculate  the volume of a

monoclinic  system which is  equal  to  a  b c  sin beta,  the reciprocal  lattice  volume is

nothing, but 1 V star is equal to 1 by V which is equal to 1 by a b c sin beta or equal to a

star b star c star sin beta star. So, this is how one can calculate the reciprocal lattice

parameters for monoclinic system.



(Refer Slide Time: 08:29)

In  case  of  triclinic,  this  representation  becomes  even  more  complicated  because  the

angles;  alpha,  beta,  gamma  are  all  not  90  and  hence,  the  relationships  are  more

complicated as I have shown here in this presentation which is also taken from a text

book.

(Refer Slide Time: 08:54)
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Now, let us see how we can visualize Bragg's Law in reciprocal lattice. Here in the figure

on your left I have taken the section of a star c star plane of reciprocal lattice. So, the grid

lines that are visible here, it corresponds to the reciprocal lattice points. So, every point



of intersection of these lines presented a reciprocal lattice point in the a star c star plane

and we assume that O, this O as the reciprocal lattice origin and the direction XO is the

direction of x-ray beam that is falling on this particular crystal.

So, now what we are trying to do is to draw a circle in such a way that O falls at its

circumference, C is the center of the circle and OC is equal to CX equal to 1 by lambda.

That means, we are trying to construct a circle with radius equal to 1 by lambda. Lambda

is the wavelength of a standard deviation. So, this circle is formed in the plane of the a

star c star reciprocal lattice plane and O falls at the circumference of the circle. After

drawing this circle, we find that another reciprocal lattice point P which is here is falling

on the circumference of this particular circle of radius 1 by lambda.

So, then we consider a triangle OPB which is here OPB which is a right angle triangle

and then, we try to calculate sin OBP sin of OBP where the angle OBP is equal to theta

because when we are trying to see. Now, let us concentrate on the figure on the right

hand  side.  The  incident  takes  a  beam is  making  an  angle  theta  with  this  particular

reciprocal lattice plane which means this angle is theta. As a result the angle OBP is also

theta. So, OB and sin OBP is equal to OP by OB OP by OB and now OB is nothing, but

the diameter of the circle which is equal to 2 by lambda. So, we can rewrite as sin theta

equal to OP by 2 into lambda.

Now, as P is another reciprocal lattice point, then the distance OP must correspond to 1

by d hkl for the reciprocal lattice point P because this OP is perpendicular to OB. So, we

are dropping a perpendicular from the origin and coming to a point and cutting it at P

which is a reciprocal lattice point. So, the corresponding distance OP is supposed to be 1

by t hkl that is the underlined principle of generating the reciprocal lattice points. So, we

replace OP equal to 1 by t hkl and we write sin theta equal to lambda by 2 d hkl or we

can write lambda equal 2 d hkl sin theta. That means Bragg's Law condition is satisfied

for this particular reciprocal lattice point P.

So, what are the implications of this understanding? Whenever a reciprocal lattice point

coincides with the circumference of the circle drawn like this with the lambda with the

radius 1 by lambda, Bragg's Law is satisfied and the deflection occurs. The reflecting

plane is perpendicular to OP, hence parallel to BP.



So, the plane which is the reflecting plane is perpendicular to P which means parallel to

BP, where BP is perpendicular to OP. The direction of diffracted beam is OD is parallel

to the direction CP. That means, it  makes an angle 2 theta with the incident beam as

shown here. That means, when we try to observe a diffraction coming out of a set of

parallel planes, we measure it at an angle 2 theta with respect to the incident plane.

(Refer Slide Time: 15:32)
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So,  now this  particular  drawing  which  we  have  seen  here  is  only  in  one  particular

reciprocal lattice plane of a star c star like that you have sets of planes. In a star b star

direction or c star, b star planes as a matter of fact these reciprocal lattice points are there

in all directions in three-dimension and if we consider those points, it actually represents

a sphere. So, when you represent a sphere like that, immediately the size of the sphere is

related to 1 by lambda. That means, smaller the value of lambda, larger the value of 1 by

lambda; larger the value of lambda, smaller the value of 1 by lambda.

So, for radiations with smaller wavelength, we should have a larger sphere as shown here

in case of M o k alpha radiation and in case of longer wavelength like copper k alpha

radiation, where the wavelength is nearly double that of molybdenum, the sphere that is

constructed is of smaller volume, a smaller diameter and when we have understood the

formation of reciprocal lattice from a direct lattice, this equation at the bottom is another

representation of Bragg's law in reciprocal space. So, this expression is one of the most



important expressions in the theory of x-ray diffraction a representation of Bragg's Law

in terms of reciprocal lattice constants.
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So, now if we consider this sphere with radius 1 by lambda as shown here, we kept a

smaller sphere with radius 1 by lambda and then, with radius of 1 2 by lambda which is

the diameter of the smaller sphere. If we construct another sphere having the center at the

point of intersection here, a sphere with radius 2 by lambda is called a larger sphere and

this larger sphere is called the limiting sphere and the smaller sphere with radius 1 by

lambda is called the sphere of reflection.

So, this sphere of reflection is also called the Ewald's sphere after the name of Paul Peter

Ewald,  a  German  Physicist  and  Crystallographer  and  he  introduced  this  concept  of

sphere of reflection and limiting sphere in his article in 1969 in Acta Crystallographica.

The reference is given here. What are we trying to understand from here in the next

slide? I will show you a representation where we will see that all the reciprocal lattice

points which are falling within this limiting sphere of reflection can be made to pass

through this sphere of reflection.

So, from limiting sphere the reciprocal lattice points which come within this limiting

sphere by rotating the crystal in front of the x-ray beam, one can melt those reciprocal

lattice points to pass through the Ewald's sphere and once a point is passing through the



circumference  of  this  Ewald's  sphere,  the  periphery  of  Ewald's  sphere  it  makes  a

diffraction to happen.

So, utilizing this concept and thinking that assuming that there is one reciprocal lattice

per unit, reciprocal lattice volume one can calculate the number of reflections that can be

originated from a given crystal. So, the number of reflections that can happen that can be

obtained from a given crystal can be calculated as four-third pi 2 by lambda cube 2 by

lambda is the diameter of this particular limiting sphere.

So, whatever reflections fall within this limiting sphere of this volume can be recorded

and one can get the data for those reciprocal lattice points. So, then the value of n can be

calculate in terms of direct volume of the direct lattice, that is volume of direct unit cell

in terms if we know the wavelength of diffraction.

So, just for one example when we have an orthorhombic unit cell of volume about 1600

cubic  angstroms,  if  you use  copper  k alpha radiation  which has  wavelength  of  1.54

angstrom,  one  can  get  about  14,600  reflections  whereas,  if  somebody  is  using

molybdenum k alpha radiation, this number of reflections suddenly jumps to 1,49,000

reflections  using  molybdenum.  That  means,  by  using  a  smaller  wavelength  one  can

achieve a larger number of reciprocal lattice points. That means, one can achieve much

higher resolution.

(Refer Slide Time: 22:26)



So, in this particular presentation I will take help of this animation which is available in

the website of Professor Brenton Campbell and let us try to.

(Refer Slide Time: 22:45)
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So, here this point is the source of x-ray as we can see and then, we choose a crystal

oriented in a particular direction and we choose a radiation of molybdenum.

(Refer Slide Time: 23:03)

So, in this presentation what is visible is that these bright red spots are reciprocal lattice

points and the crystal in the center is rotated in such a way that these reciprocal lattice



points are rotating in front of the beam, and as and when a reciprocal lattice point is

crossing the Ewald's sphere, it is making diffraction. So, now if we change their radiation

from molybdenum to  copper,  you see  that  the  size  of  the  sphere  has  become much

smaller. So, the number of reciprocal lattice points falling with beam, the limiting sphere

of diameter 2 lambda has reduced. So, the number of reflections that one can achieve has

drastically reduced.
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If I choose one different lattice different crystal here, what you can see? It is a zinc blend

crystal in a particular plane and in the reciprocal lattice, what you can see some bright

red spots and some red spots which are not bright, which are sort of disappeared and

when those bright spots are crossing the Ewald's sphere, it is making a diffraction and

when those dull spots are crossing Ewald's sphere, it is not making any diffraction. This

indicates that not all reciprocal lattice points while crossing the Ewald's sphere will make

a diffraction to happen. So, what is happening, this is the phenomena called systematic

absence which we will learn in the next slide. There are cases where a set of reflections

will be systemically absent and will not be absorbed for various symmetry constraints

and only some of those reflections which are bright in this presentation will be visible.

Again  if  you  change  the  radiation  to  copper,  you  can  see  that  the  total  number  of

accessible reflections has reduced drastically.

(Refer Slide Time: 25:41)
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So, now in order to understand the origin of this systematic absence, I once again would

take  help  from  a  two-dimensional  presentation.  Suppose  this  is  a  two-dimensional

primitive lattice where you have lattice points; only at the corners as shown here.

So, now if we draw set of planes one which is passing through the corners like that, these

planes will always have there corresponding incident beam and coming out diffracted

beam and at some particular angle of theta, the diffraction angle it will give you x-ray

diffraction from 2 1 set of planes. Similarly if we construct the set of 2 1 planes which



means it connects from one unit cell, the corner of the other unit cell passing through the

midpoint of the our direction.

So, this 2 1 set of planes having a distance d 2 1 will always meet the condition for

Bragg's Laws in reflection.

(Refer Slide Time: 27:08)

Now, if  we consider  a  centered  lattice  in  two-dimension where we have  atoms at  4

corners and an atom at the center of the lattice, in that case when we try to construct the

1 1 set of planes where this distance is d 1 1, there is no problem. A diffraction would

occur at a suitable direction where the Bragg condition is met, but in this case of 2 1 set

of reflections suppose the dark lines are parallel  and these dark lines,  the interplanar

distance is d 2 1, once again the lines which are dashed lines, the distance between them

is also d 2 1. You see both the dark and the dashed lines represent, the same set of plane 2

1. That means, the planes with dash and the bolt line have the same miller indices.

So, that means this distance is half of d 2 1. What will happen, the planes at a distance d

2 1 meets the Bragg condition of integral multiple of wavelength is equal to the path

difference.  Then,  obviously  this  will  not  meet  diffraction  condition.  As  a  result  the

constructive interference will not happen and in this particular case, only the destructive

interference will happen and we will not see any diffraction from the set of 2 1 planes.



So, from a diffraction pattern of a centered lattice like this in two-dimension, the 2 1 set

of planes will be systematically absent for the time being.
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I  am only introducing you to this  lattice  centering  and the corresponding systematic

absence conditions, but at a later stage we will be able to derive these conditions using

some equations.

So, in case of a centered lattice, that means the b c face is centered b and c means k and l.

So, for general reflections h k l k plus l when it is odd 2 n plus means it is odd. The

reflections will be absent; that means, in case of a centered lattice with any value of h,

when k plus l is odd say for example, 2 1 h 1 2 h 3 2 and so on. These reflections will be

absent systematically in case of a centered lattice. Similarly for b centered lattice h plus l

will be odd and for c centered lattice h plus k will be odd.

Now,  in  case  of  face  centered  lattice  when  all  the  three  conditions  need  to  be

simultaneously fulfilled,  that means for face centered lattice in all the cases h plus k

should be odd, h plus l is odd, k plus l is odd. That means, h k and l not all even or all

odd. So, in this case only reflections which are like 2 0 0 2 2 2 2 2 4 2, these type of

reflections will be present and any other reflections, it will be absent.

Similarly, all even all odd also will be present. So, 1 1 1 3 1 1, these are all odd set of

reflections  and they  will  be  systematically  present.  All  others  will  be  systematically



absent. Similarly for body centered lattice, this condition has to be fulfilled that is h plus

k plus l is odd will be systematically absent. So, the absent reflections will be of this type

1 plus 1 plus 1 3 2 1 2 and so on where the sum is 3.

So, in the next lecture, we will try to understand how the systematic absence conditions

for glides and screw axis to be followed.


