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Lecture - 20
Theory of X-Ray Diffraction

Welcome back to the course of Chemical Crystallography. This is the beginning of 4th

week.  So,  in  the  previous  3  weeks,  we  have  learned  some  of  the  basic  aspects  of

crystallographic symmetry, point group, space group. Then we understood the aspects of

planar  density,  linear  density  and  from there  we  are  calculating  the  atomic  packing

factors and all that.

(Refer Slide Time: 00:51)

So, today we will start the Theory of X-ray Diffraction. And we would like to introduce

you to the Bragg’s law, and then the concept of reciprocal lattice. As we are intended, we

are interested to learn the X-ray crystallography using X-ray radiation, and all of us are

aware about this spectrum of electromagnetic radiation in terms of wavelengths. Once

again to remind you that the X-rays fall in the region of 10 to the power minus 10 about

that kind of wavelength 10 to the minus 10 meter, so the wavelength is extremely small

and  highly  penetrating  in  nature.  So,  we  use  X-ray  radiation  to  identify  the  crystal

structures. 



(Refer Slide Time: 01:29)

The theory of diffraction goes like this, when a set of parallel beam of X-rays fall on a

scattering substance like a crystal. Two things can happen those 2 a set of parallel beams

can get scattered or diffracted from the source of scattering, which is which is a crystal.

So, the source of scattering can do two things; one is that the waves that are falling on

the scattering substance. The wave 1 and wave 2, they can be diffracted having the same

phase as that of the incident radiation.

So, when such scattering happens, the scattered radiation is enhanced in their intensity

that means the amplitude of that scattered radiation is twice the amplitude of the incident

radiation and what we see is a diffraction that takes place. On the other hand, when two

waves suppose wave 3 and wave 4 undergoes a scattering event through a crystal. And

they come out as offset that means they are not like before, and they do not join combine

together to give a diffraction data, what we get is something like that which means there

is no diffraction, the interference is out of phase, and hence we do not see any diffracted

beam. 



(Refer Slide Time: 03:18)

So, this phenomena it was observed by Bragg’s in 1912 for 1914 immediately following

the different immediately following the discovery of scattering of X-rays by Max von

Laue wave in 1912. So, the father and son Bragg’s they introduced they world famous

Bragg’s  law  in  X-ray  diffraction.  So,  how  they  interpreted  this  diffraction  is  very

important. 

So,  here if  we have two sets  of crystallographic planes  A and B containing  a set  of

scatteres, those are scattering centers may be atoms. And when they are particular set of

parallel  planes,  which  are  planes  of  A and B at  a  distance  d  h  k  l,  which  we have

identified on the right hand side that these two planes are facing the incident beam as we

are  indicating  here.  So,  two  set  a  set  of  parallel  beams  1  and  2  of  the  particular

wavelength lambda is falling on a crystal, what can happen is they can get diffracted in

the direction of 1 prime and 2 prime. So, the angle of incidence is theta, and angle of

diffraction is also theta here. So, now these two waves 1 and 2 are getting deflected from

two parallel layers of scattering centers, and going back to the viewer. 

So, what Bragg and Bragg propose that the path difference of these two waves that is the

wave number 1 and wave number 2, if it is integral multiple of the wavelength, then the

scattering is in phase a coherent scattering, and as a result a diffraction is observed. So,

by doing a simple geometric calculation, we try to understand how the Bragg’s law can



be derived. So, here the point P and Q from where the diffraction takes place, So, the

beam 1 gets diffracted from point P, and beam 2 gets diffracted from point Q. 

So, now if we drop a perpendicular from P to the line number 2, and from P to the line

number 2 prime as S and T, which means that the portion before diffraction up to P is

same as up to S in case of 2. After diffraction P 2 to 1 prime, and P 2 to 2 prime is again

same. So, the path difference between the diffracted beams 1 and 2 is nothing but S Q

plus Q T. And what Bragg proposed is that this path difference S Q plus Q T should be

integral multiple of the wavelength to observe any X-ray diffraction from a set of planes

kept at d h k l distance. 

So, now if we want to see what is S Q, we look at  S Q and very simple geometric

understanding can indicate that the theta here is same as the theta here in big triangle

SPQ and similarly PQT. So, now as we know PQ is equal to d h k l the distance between

a set of h k l planes. So, n lambda is equal to S Q which is d sin theta that d sin theta and

Q T is also this Q T is also this h k l sin theta, which means n lambda equal to 2 d h k l

sin theta. And this is the famous Bragg’s law and it is so simple, but so important in X-

ray diffraction. So, about 100 years ago this particular law was proposed by Bragg’s, and

it opened up a new area of X-ray crystallography is instant. 

(Refer Slide Time: 08:06)

So, at this point, I would like to draw your attention to the geometry of a powdered X-ray

diffractometer. The geometry is like a circle; this circle is called the angle the cycle of



diffraction, where we have a source of X-ray at the point T. So, this can be if any kind of

X-ray source like the sill T X-ray or micro focus or whatever, we have understood, we

have learned before. And then we have a sample at S, which is the center of the circle,

and the detector C is kept on the circumference of this particular circle. 

And the O is the axis for rotating the detector and the sample. So, now when the beam

falls on the sample S at an angle theta, we measure the diffraction from that sample at an

angle of 2 theta and then the diffraction is recorded and it presented. Here I would like to

show you 1 very ancient days powder X-ray diffraction recorded on a photographic film.

So, what we see here is the at the center the dark spot indicates that there is a beam stop

somewhere here, which stops the beam from falling on the X-ray plate. So, the dream

beam stop can be here, it can be placed very close to the sample as well depending on the

geometry  of  the  diffractometer.  And  then  when  the  diffraction  happens  from  the

powdered sample it happens in a conical manner. 

So, if you have a sample here, the cone behind this is the angle or diffraction. And then if

you place a photographic film behind it, what you would see as the concentric circles of

bright  lines.  Those  concentric  circles  of  bright  lines  indicate  that  the  diffraction  is

happening  at  different  angles  for  the  particular  set  of  crystal.  In  case  of  powder

diffraction as we know it is a collection of large number of micro crystallites, and they

are  all  oriented  in  all  kinds  of  different  directions,  so what  we get  to  see is  a  two-

dimensional pattern of intensity versus 2 theta using a modern days diffractometer. 
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This is a data recorded using a scintillation counter detector, which is a point detector,

and it detects only 2 theta of a particular width at a given point of time, so, when we

record this X-ray diffraction data. We get to see a set of peaks, these peaks indicate that

those  particular  d  values  at  which  the  Bragg’s law is  met,  we see  a  diffraction  and

wherever we do not see any peak means there is no constructive interference of those X-

ray beams.

Using this very simple technique of powdered X-ray diffraction one can identify the type

of lattice that one is examining in a given sample, if it is a cubic system. For monoclinic

or triclinic or any other symmetry things are slightly difficult, but for a simple system

like cubic system powder diffraction data can be used very easily to identify the lattice

centering. So, what we do is we record a powder X-ray diffraction data from about 3 to

50 to 100 degree in 2 theta.

And then we find out the 2 theta positions, where all we get peaks, and then we try to

calculate the sin squared theta value for each of those peaks, and we apply the Bragg’s

law in the slightly different manner where it is sin square theta equal to lambda square h

square plus k square plus l square by 4 a 0 square. And we use the simple equation d h k l

equal to a by square root of h square plus k square plus l square for cubic systems to

calculate the lattice parameter a. 
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Let us see with 1 example, how to find out the h k l indices and crystal structure of a

cubic system from powder X-ray diffraction table. So, to start with what we have is a set

of peaks, and the corresponding 2 theta values as listed in column 1 and 2. So, now we

calculate the corresponding sin square theta values for each of those peaks and write it

down. Now, we try to find out a common factor in this column of sin square theta, where

if we divide all these numbers by that common factor, we should end up getting integers.

So, in this particular case, what we find is the first term 0.0308 such the purpose of a

common factor, so that common factor is used to divide all the values of sin square theta

on this column and is written in the 4th column. So, now these are integers. And as we

have seen in the previous slide, where sin squared theta is proportional to h square plus k

square plus l square with a constant lambda square by 4 a 0 square, we multiply this

fraction by 2 a constant quantity, and get the set of integers like this.

So, now this h square plus k square plus l square corresponds to 2, 4, 6, 8, 10, 12, 14 and

16. Why did we do that, because we see that if h square plus k square plus l square is 1

we are not able to write unique values for h k and l for all these numbers.

Why are we multiplying it by 2 because, when we try to understand if the h square plus k

square plus l square is equal to 1, what are the possible values of h, k and l, it can be 1 0

0 0 1 0 0 0 1. When it is 2, it can be 1 1 0 0 1 0 1 0 0 1 1; in case of 3 it can be 1 1 and 1;

in case of 4, it can be 2 0 0 0 2 0 2 and 0 0 0 2; in case of 5 it can be 2 2 1 that is 2 square



plus 2 sorry, it can be 2 0 1 so 2 square is 4 plus 1 5; in case of 6 it can be 2 1 1, which

means 2 square plus 1 plus 1 is 6. But, now for 7, we are stuck, 7 cannot be represented

as squares of 3 integers, and then we first it multiplied by 2. And see if all the numbers

that we generate on the column 4, whether it can be written as a combination of 3 sets of

integers.

So, now when we have multiplied by 2, we have the numbers 2, 4, 6, 8, 10, 12, 14 and

16. So, now 2 can be written as 1 0 actually it can be 0 1 1 or it can be 1 0 1; 2 0 0, which

means it can be family of planes of 2 0 0; 6 is 2 1 1 so it can be family of 2 1 1 planes; 8

can be written as 2 2 0 that is family of 2 2 0; 3 1 0 and so on.

So, what we can see here is that only a set of h k l planes are allowed in this particular

diffraction pattern not all possible values of h k l. For the time being, make a note that for

single simple crystal, if it is a simple cubic system. The combination of h k and l the h

square plus k square plus l square should be equal to 1, 2, 3, 4, 5, 6, 8, 9 and so on. 

For body centered cubic lattice, it has to be 2, 4, 6, 8, 10, 12, 14 and 16, which is the case

here. And in case of face centered cubic, it has to be 3, 4, 8, 12, 8, 11, 12 and 16. So, by

looking at the 5th column and comparing it with the value for body centered cubic, we

conclude that this is a body centered cubic lattice. 

(Refer Slide Time: 18:52)



And then if we try to calculate the lattice centering, lattice parameters. we take one of

these 2 theta values, suppose we take the last one 2 theta for 4 0 0 reflection as our

standard reflection, so theta is 29.71. So, we calculate the d 400 as equal to lambda by 2

sin theta, because if we are applying Bragg’s law. So, we calculate the d 400 to be this

number 0.71699 angstrom. And then from that we calculate a 0 equal to d into square

root of h square plus k square plus l square.

So, we multiplied d mean square root of h square plus k square plus l square, which is 4

because here h k l is 4 0 0. So, 4 0 0 square is 16 and square root of that is 4. So, a 0 can

be calculated as 2.868 angstrom. So, this is how one can calculate the lattice parameter,

and identify the lattice centering of simple cubic systems. It is it can be simple cubic,

body centered  cubic,  or  face  centered  cubic,  one  can  determine  the  lattice  centering

correctly. 

(Refer Slide Time: 20:16)

Now, let us try to understand, how this Bragg’s law can be applied to understand the

choice of radiation. As we know we write Bragg’s law as n lambda equal to 2 d h k l sin

theta and we generally construct n equal to we write n equal to 1. So, the maximum value

for of maximum value of sin theta can be 1, which indicates theta max can be 90 degree.

So, lambda equal to 2 d h k l max is for theta equal to 90 degree. So, d h k l max is equal

to lambda by 2. So, now, if the wavelength is copper k alpha, my lambda is about 1.54



angstroms by 2, which is equal to 0.77 angstroms for copper k alpha radiation. And the

same is equal to 0.71 by 2 as 0.35 angstrom for Mo k alpha radiation. 

This  mind  you these  are  very  approximate  values;  I  have  not  taken  values  up  to  4

decimal places, which indicates that using molybdenum k alpha radiation one can go to a

very  high  resolution  of  0.35  angstrom in  d  values.  And get  the  information  on that

particular crystal structure to a very high resolution. Whereas, using copper k alpha, you

can only achieve a resolution of 0.77 angstrom.

Now, I would like, now I would like to introduce you to the IUCr limits. What is IUCr?

IUCr  is  the  short  form  of  International  Union  of  Crystallography.  And  it  is  a  big

association of crystallographers across the world and there, there it is recognized that for

molybdenum radiation,  one has  to  achieve  a  data  up to  50 degree  in  2 theta  for  an

acceptable crystal structure solution.  

So,  what  does  it  mean  the  50  degree  2  theta  means  25  degree  in  theta.  So,  for

molybdenum radiation, which is about 0.71 angstrom is equal to 2 d h k l sin 25 degree,

which meant  means d h k l  can be calculated as 1.183 angstroms.  So, we write the

resolution in terms of reciprocal distance that is 1 by d h k l as equal to 0.84 angstrom

inverse. So, this is the resolution that is minimum required for a publishable data in any

crystallography journal. 

So, if you do the calculation for the same, using copper radiation, and if you want to

achieve this resolution,  what should be the 2 theta value for that particular  case.  So,

when you use copper k alpha radiation, you use wavelength of 1.54 angstroms, which is

equal to 2 into the corresponding d should be about 1.2 angstrom. And I need to know

the corresponding sin theta. So, if you do this calculation, you will find that theta is about

42 degree, which means 2 theta is about 84 degree.

So, in case of copper you need to collect data up to a very higher much higher angle

compare to a molybdenum data to achieve the same resolution. So, this indicates that by

using copper data, you should collect data up to a high angle. If you are collecting using

molybdenum, you restrict yourself up to 50 degrees of 2 theta to collect a routine X-ray

diffraction data.



So,  from  here  we  will  continue  in  the  next  lecture  to  discuss  about  the  choice  of

appropriate  radiation  for  macromolecular  crystallography  and  small  molecular

crystallography. And we will see why do we need to use copper radiation for powder X-

ray  diffraction,  and  why  do  we  use  single  molybdenum  for  single  crystal  X-ray

diffraction.  From there,  we will  start  discussing  about  the  introduction  of  reciprocal

lattice,  and we will try to understand the theory of X-ray diffraction using reciprocal

space.


