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Cubic Structures and atomic packing factors

Welcome back to the course of Chemical Crystallography, in the previous lecture we

learnt about the linear density repeat distance and then we tried to calculate the planar

density of various crystallographic planes; in case of simple cubic body centered cubic

lattices and I left it for you to work out for the face centered cubic lattices.

(Refer Slide Time: 00:44)

So, today we will try to understand these 3 basic systems simple cubic structure, first

body centered cubic and face centered cubic structures and we will try to calculate their

packing fractions and things like that. So, in case of simple cubic lattice as we have

already indicated there are 8 atoms located at 8 corners of a cube and this is shown here

in  this  particular  slide.  So,  if  you look at  any atom that  is  marked here  as  red that

particular atom has 6 nearest neighbors from 6 different Latin unit cells.



So, the left right back front top and bottom corresponds to a coordination number of 6 for

every corner atom of this simple cubic structure, remember you have only corner atoms

in case of single simple cubic structures.

(Refer Slide Time: 01:50)

So, when we try to calculate the atomic packing fraction or atomic cracking factor we

write APF equal to volume of the unit cell divided volume of the atoms in the unit cell

divided by volume of the unit cell.  So, now in case of simple cubic structure this  is

calculated to be 0.25 how in case of simple cubic if you note that the corner atoms touch

each other along the face edge along the edge direction which is again. So, we can write

a equal to twice R and from that you can calculate the volume of 1 such atom because,

every atom sitting at corner contributes 1 by 8.

So, all together 8 corner atoms contributing 18 gives you 1. So, number of atoms per unit

cell is 1 and the volume of that atom is 43 pi R cube R is half of a. So, 43 pi R cube is the

volume occupied by those atoms and the volume occupied by the unit cell is a cube, so

the result turns out to be just 0.52. Which means in case of simple cubic there are lots of

wide space in the lattice.



(Refer Slide Time: 03:25)

So, when we go to the body centered cubic lattice or body centered cubic structure as we

write it as BCC, in this case the close packed direction is the body diagonal. So, from

one corner through the center atom to the other corner the atoms are touched touching

one another considering them as hard spheres. So, in that case if you consider the atoms

located at the center of the body center of the unit cell,  then you have 8 such atoms

which are touching to this  particular  central  atom. So, that is  why we write  that the

coordination number of a body centered lattice is 8 and the body centered atom has

coordination number 8.

(Refer Slide Time: 04:14)



So, in case of body centered lattice the atomic packing fraction turns out to be 0.68 how

because, the body diagonal is capital R which is sorry body diagonal is root 3 a which is

equivalent to 4 R, R is the radius of each atom and then every unit cell  contains 18

contribution from the corner atoms. So, there are 8 such atoms at corner so contributing

to 1 and then the body center atom which is totally inside the unit cell, so it contributes to

1.

So, you have total 2 atoms per unit cell, so now we try to calculate the atomic packing

factor here. So, if this is equal to 2 times that is 2 atoms per unit cell the volume of the

atom. So, now this R capital R is root 3 by 4 a, so the volume of 1 atom is 4 third pi root

3 by a for whole cube and the volume of the unit cell is a cube once again. So, if you do

this calculation you will find that the result comes out to be 0.68, it means this is slightly

more compact packing compared to the simple cubic lattice.

(Refer Slide Time: 05:47)

So, now if we try to see what happens when it is face centered cubic lattice, in case of a

centered cubic lattice the closed pack direction is your face diagonal; which means along

this face the atoms are connected to each other. So, in case of face centered lattice the

coordination number is 12; that means, every atom has 12 nearest neighbors associated

with it.



(Refer Slide Time: 06:22)

So, in case of this face centered cubic the atomic packing factor for FCC turns out to be

0.74 highest  among all  the 3.  So,  how do you calculate  that  you see again the face

diagonal which is root 2 a corresponds to R 2 R and R; which means the length of the

what the face diagonal turns out to be 4 R which is equivalent to root 2 a and then the

unit cell contains 4 atoms per unit cell. How see the face atoms contribute half and there

are 6 such faces, so those 6 such faces contribute to 6 such faces contribute to 3 and 8

corner atoms contribute 18 th each. So, 8 into 18 th gives you 1.

So, 3 plus 1 equal to 4, so then we calculate atomic packing factor again in the same

manner 4 into 4 third pi R cube here R equal to root 2 a by 4. So, then if you compute

this  turns out to be 0.74, so this  is the maximum that 1 can have in case of these 3

different packings.



(Refer Slide Time: 07:59)

So, in case of face centered cubic and hexagonal closed packed structures this atomic

packing factor is turned out to be 0.74 and this is the highest packing fraction that 1 can

achieve.  The most efficient packing for equal sized this spheres, but now we need to

understand the stacking in HCP that is hexagonal close packed and stacking in FCC the

face centered close pack if we assume that the first layer is placed like this, then there are

2 ways the second layer can be placed. So, when you place the second set of atoms like

that in gray it is like ABABAB packing.

So, the third layer can be placed on exactly on the yellow or third layer can be placed

like the red; so that means, there are 2 ways 1 can put the third layer and that third layer

decides whether it is hexagonal close pack or a face centered close parking structure. So,

in case of hexagonal close packing it is ABABAB type of packing and in case of FCC it

is ABC ABC ABC type of packing. So, both of these structures here common features

the  atoms  are  closely  packed  each  atom  has  12  nearest  neighbor,  so  that  is  the

coordination number 12, to see this packing we can use a simple demonstration.



(Refer Slide Time: 09:51)

This green layer indicates the lowermost level in that we are designating some of these

points with blue dots and we will see that they end up showing as tetrahedral interstitials.

So, now I am placing 1 layer of red dots which are alternate with respect to the blue and

the it will correspond to the octahedral interstitials. So, once we place the another layer

of the spherical atoms which are now represented in blue, you see that when we look at

this region here we have 3 greens 1 blue and then at the center we have 1 blue.

So,  that  central  blue  atom corresponds  to  the  tetrahedral  interstitial  like  this,  if  we

concentrate  at  a different  location  where you can see this  arrangement;  for example,

when we try t o see here the arrangement at this point. You have 3 green atoms at the

lower end layer 3 blue atoms at the upper layer and in between these 6 atoms you have 1

central red atom located at the octahedral interstitial.

So, when you place 2 layers of atoms you generate two different types of sites one is

called the tetrahedral site or tetrahedral interstitial the other point is octahedral site or

octahedral interstitial. What is the difference the tetrahedral interstitial has coordination

number equal to 4, while the octahedral interstitial has a coordination number 6.



(Refer Slide Time: 12:05)

So, these interstitials are also termed as holes or octahedral holes or tetrahedral holes and

we can think of generating different ceramic structures where you have a cation and

anion and in general the anions are larger in size cations are smaller in size and as a

result the cations occupy these different interstitial sites.

So, when we have determined that there are different types of holes available, now we

must decide which sites are occupied by a given atom and how many sites are occupied.

The first point which sites are occupied by a given atom is decided by the radius ratio

that is the ratio of the radii of cation to anion; whereas, the number of sites inside the

lattice occupied by a number of atom is decided by the stoichiometry and charges on

those cations and anions this we will see in future slides. So, let us see what is the ideal

radius ratio for cation and anion for octahedral site. So, in case of octahedral site the

central  atom which is  marked here which is  marked here in red,  the central  atom is

connected to 4 atoms on this plane.

So, the distance d from the center of 1 anion 2 the centre of other anion through the

cation that distance d is equal to 2 R of cation plus 2 R of sorry 2 R of anion and 2 R of

cation. So, once again this distance d can be calculated as this is the this the distance is 2

R as we indicated. So, the value d is 2 R and anion square plus 2 R anion square and

square root of that. Therefore, we can equate these 2 equations and calculate the ideal

value for cation to anion radius ratio for an octahedral site.



In the same manner it can be shown for tetrahedral site the value is 0.225, I would like to

leave it to you to determine how can you calculate this value. So, now we apply this

radius ratio rule.

(Refer Slide Time: 15:10)

As we know the cations  are generally  smaller  than anions,  so in  general  rc by ra is

smaller than 1. So, now for as to have a stable ceramics structure and I am surrounding a

cation must touch each other. So, now there can be 4 different situations in the situation 1

where the cation is touching all the 4 anions, but the cation is large enough to drive these

anions away and generating a gap between the anions.

So, this is 1 of the stable conditions where the structure is stabilized, here is slightly the

cation is slightly larger than ideal radius ratio value of that particular crystal packing. If

the cation is perfectly fitting inside the interstitial site; that means, the cation and anions

are touching in along the diagonal anions are also touching each other in all the 4 edges.

So, this is the ideal situation of ideal ratio of cation to anion and this is the most stable

structure. But once the cation is too small it is not touching any of the anions and the

anions can only touch each other, in that situation the cation can rattle; that means, the

cation can vibrate inside the lattice as a result the structure becomes unstable and we do

not have a large number of structures having this type of arrangements.



(Refer Slide Time: 17:18)

So, now we need to learn: what is the coordination number and what is this relationship

with ionic radius. So, coordination number increases with r c by r a that is the radius of

cation by radius of anion. So, here we have a small table, on the first column we are

giving the value for  r  cation  versus  r  anion the ratio  the corresponding coordination

number and a probable structure representing that.

So, when it is this cation to anion ratio is 0.15; that means, cation is extremely small

compared to the anion then the coordination number is 2 and you see a situation like this.

W hen this coordination number falls between 0.15 and 0.225 the coordination number is

found to be 3 and the situation arises like that.

The next higher ratio is between 0.25 to 0.14 0.41 this corresponds to the coordination

number 4. So, when you have 4 coordinated system coordination number 4 this gives rise

to  a  tetrahedral  interstitial  and  that  is  seeing  in  case  of  zinc  blende  structure  Zns

structure. We will discuss the structure in detail in future slides, but what we can and see

here is that you have sulfide atoms occupying the face centered positions the 8 corners

and face centered positions and zinc atom occupying the alternate interstitial sites those

are tetrahedral interstitial sites.

So, now when the radius ratio increases to about 0.41 to 0.73 the coordination number 6

is achieved and it  represents the octahedral arrangement and that is seen in the most

common crystal structure of sodium chloride; sodium chloride structure as you know is



interpenetrating face centered lattice we will see it through an animation as well in future

slides.

When the radius ratio is close to 1 then the coordination number increases to 8, which

means you get a structure like cesium chloride structure where you have a simple cubic

lattice of cesium sorry simple cubic lattice of chloride and a cesium atom sitting in the

middle.  So,  this  is  another  example  of  the  important  simple  cubic  lattice  which  is

actually interpenetrating simple cubic lattice.

(Refer Slide Time: 20:32)

So,  now let  us  see  how 1  can  calculate  the  radius  ratio  cation  to  anion  ratio  for  a

coordination number 3. So, here we have 3 3 anions the blue ones are the anions and we

have  a  red  cation  at  the  center.  So,  now  if  we  construct  a  triangle  ABC which  is

equilateral triangle, in that we have the angle PAO as alpha what is that we have dropped

a perpendicular from O to AB and maybe it OP. So, as a result AP equal to PB AP equal

to PB equal to the radius of the anion and AO is nothing but radius of the anion plus

radius of the cation.

So, now if we do AP by AO which is cos alpha and alpha is 30 degree because this is an

equilateral  triangle and the line AO bisects this BAC angle. So, it is the angle of 60

degree is bisected that means it is 30 degree. So, what we can do is AP by AO equal to

AP is ra AO is ra plus rc which is again equal to cos 30 degree which means roots 3 by 2.



So, then if we simplify this we can then calculate the ideal radius ratio for a coordination

number 3, this concept can be utilized when you try to calculate the a ideal radius ratio

for the tetrahedral interstitial; when you have a tetrahedral interstitial filled with a cation

and you have 4 anions forming a tetrahedral.  You would need to utilize this  type of

simple  geometrical  method to find out  the  corresponding radius ratio  for the for  the

cation and anion in case of tetrahedral structures.

(Refer Slide Time: 23:11)

So, now when we try to understand the tetrahedral and octahedral sites for face centered

cubic lattice, here in this figure the figure above has a face centered lattice where you

have black dots at 8 corners and 6 faces representing the face centered cubic lattice. So,

in  that  in  the  middle  we have  identified  1  we have  identified  1  point  which  is  the

octahedral  hole  or  octahedral  site,  the  octahedral  site  indicates  that  this  atom  has

coordination number 6 and there are 12 such octahedral sites present in these lattice.

So, because you have 1 2 3 4 all the edge centers all the edge centers and all the edge

centers, so total 12 octahedral sites along the edge centers plus the 1 which is at the

center of the lattice.

So that means, you have 13 lattice sites 13 octahedral lattice voids. Now this corn edge

center sites are shared by 4 unit cells as you can understand this 1 is shared by this unit

cell the 1 which is on the next then on the top this side and then on the top on the right

hand side.



So, every corner the every edge center lattice site is shared by 4 unit cells. So, each of

them contribute 14; that means, you have 12 such sites everyone contributing 14 is equal

to 3 plus 1 equal to 4 positions per unit cell. Now, if we look at the lower representation

of the same face centered lattice where; you have atoms at 8 corners and the atoms at 6

faces. So, now the positions which are marked here in red or this 1 this 1 this 1 and so on

and all these points correspond to the tetrahedral sites. What are the coordinates of those

sites I have written 1 here actually these sites are one forth one forth 14.

Suppose this 1 then you have 1 more which is one forth 34 14 then 14 34 3 fourth and 14

14 34 these are those 4 lattice point in the lower region and the upper regions are 34 14

14 34 34 14 34 34 34 and 34 14 34. So, inside this lattice there are 8 such locations

which are tetrahedral sites and each 1 of those is inside the unit cell they are not shared

by other  unit  cells  unit  cells  like the face  like the edge center  atoms in case of the

octahedral sites. So, they correspond to the 8 number of cations that can be placed inside

the lattice.

(Refer Slide Time: 27:56)

So, in case of cubic close packed structures the FCC structures anion arrangements and

the summary of possible cation there is listed here. So, number of anions per unit cell is

always 4 as you can see and then if we start filling the octahedral sites if we feel all the

octahedral sites; that means, 100 percent of octahedral sites are filled you have 4 cations

as well.



Then  the  stoichiometry  turns  out  to  be  MX  and  the  example  is  a  sodium chloride

structure the other extreme point is when there are no octahedral site occupied. But all

the tetrahedral sites occupied we get a formula of M2X and we see a K2 or structure of

which is like this a face centered cubic lattice with a different arrangement of cation and

anions giving rise to different molecular formula or stoichiometric and it is one of the

example is for K2O. In case of third set where there is no octahedral site occupied and

only 50 percent of the tetrahedral sites occupied, once again we end up getting MX type

of stoichiometry 1 is to 1, but here the interstitials are tetrahedral interstitials which are

filled and 50 percent of those are filled.

So, the cation anion pair is an example of that is kind of structure is zinc sulfide or Zns.

When the corresponding reverse happens that is 50 percent of the octahedral sites are

occupied and not a single tetrahedral  site is occupied.  So, you have 2 cations  and 4

anions that means; you have MX 2 type of structure so this is an example of cadmium

chloride  structure.  The other  theoretical  possibility  is  both tetrahedral  octahedral  and

tetrahedral sites are 100 percent occupied. So, one should have this type of formula m 3

x, but till now there are no such known structures having these 2 type of coordination

geometry.

The last type that 1 can think of is 50 percent occupied in case of octahedral site and 12.5

percent occupied in the tetrahedral sites, the formula turns out to be m 3 x 4 and there is

one type of example a structural type called spinels; which we will discuss in the next

class this MgAl2O4 corresponds to a spinel structure where a part of the octahedral sites

are filled and a very very small portion of the tetrahedral sites are filled.

So, in today’s lecture we have learnt about the atomic pack packing factors for simple

cubic body centered cubic face centered cubic,  we have learned how to calculate the

radius  ratios  for  different  types  of  coordination’s  for  cation  and  anion  and  then  we

understood:  what  are  the  different  types  of  interstitials  tetrahedral  and  octahedral

interstitials. So, from here we will continue in the next lecture.


