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Lecture - 07
First law - part 2

All right. So, we have now, in an idea what is the Energy of the system? Now let us

suppose, we do a transformation at constant volume. Now this experiment is known as

Joules Experiment. It is another experiment carried out by James Prescott Joule. So, what

he asked is, if we do our transformation, how the energy or internal energy of the system

changes?

(Refer Slide Time: 00:53)

So, let us now define the First Law more formally. So, here we say that if a system is

subjected to any cyclic transformation, the work produced in the surrounding will be the

heat withdrawn from the surrounding and that is how we formulated the First Law that d

cross Q in the cyclic process will be d cross W. 

We are keeping a negative sign, just to make sure that the convention is correct and then,

by adding them we got d U, for any cyclic process is 0; which we stated in a different

word that Energy is a state function, unlike heat and work. Now remember here, we gave

an example of single step expansion, followed by single step compression and we know



that the work done is very different. However, we said that work done which is the net

work done by the surrounding was utilized in raising the temperature of the surrounding

Now, you may ask this question, if we had done it in a reversible way meaning changing

the pressure of the system infinitesimal amount, changing the pressure of the system by

infinitesimal amount;  that will lead to the area under the curve same for the forward

process as well as in the backward process. In this case these 2 areas cancel each other.

So, if I write W in the first step and W in the second step that will be perfectly 0. So, in

this particular case d cross W is equal to 0, d cross Q also is equal to 0 for the cyclic

process.

For a reversible cyclic process then, we can write for any reversible process is nothing,

but equal to 0. But remember that this is not always true, for any not a reversible process,

which  we  will  call  as  irreversible  process  this  integral  is  nonzero.  However,  their

addition must be 0.
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Now, let us move on and ask this question, what happens if we do our transformation to

the system at constant volume? Again, Joule did an very excellent experiment where he

tried to understand, how this quantity which we just defined as the difference between

work done and heat withdrawn, which we called as the Internal Energy of the system

changes by change in volume, as we make the transformation. 



So, for that mathematically, we can write the internal energy as a function of volume and

temperature.  Now which means the total  differential  d  U can be written  as  a  partial

differential  first  with  respect  to  volume;  keeping  the  temperature  constant  and  then,

taking the partial differential with respect to temperature, keeping the volume constant. 

Now this, comes from just the fact of differential and partial differential; the calculus

which you learnt in 12th standard. If suppose Z is a function of x and y and if I ask this

question, there is a transformation d Z which is the total differential offset and if I ask

this question how much part of d Z actually is caused by changing in x alone. The answer

will be I have to take the partial derivative with respect to x keeping y constant. So, we

are not changing y and then multiply it by a change in d x.

So, that will be the part which we sometimes write as digit x and then, similarly there

will be a part which is d Z y change in this differential d Z due to the change in y alone.

In this case we keep that x fix. Now we have used the similar formula here. Now Joule

asked this question that how one can measure this quantity? We will come back to it.
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Before that, let us do some mathematical tricks. We already know from first law that d U

is d cross W plus d Q and d cross W we know that it is nothing but opposing pressure

into d v plus d cross W.



Now, if we consider a constant volume process, d v must be 0. So, d U is nothing but d Q

for constant volume. So, we can use this equation for a constant volume process d U is d

Q v which is del U del T v d T. Now, we got a very interesting situation. If we divide d Q

v by d T. We get the heat capacity at constant volume. Because remember that is the

definition of heat capacity. How much heat is changed if we raise the temperature by say

1 degree at constant volume? So, that quantity is given by this partial derivative which is

del U del T v.

(Refer Slide Time: 08:48)

So, we can rewrite the total differential, which we just wrote for d U as d U is nothing

but del U del V T d v plus C v d T. Now our task is to understand, what is this quantity

del U del V T d v. So, that is why Joule did an very nice experiment to quantify this

quantity.



(Refer Slide Time: 09:17)

Now, what Joule did? He took bucket of water and then, inside the bucket he kept 2

containers which are round bottom flasks like and with a stopcock in between. Initially,

suppose there, I am leveling them as A and B; initially some gas filled the container, but

the container B was empty and he was also used this entire system which is just 2 bulbs

connected by a stopcock, immersed in a water where the temperature of the water can be

monitored by a thermometer. And there was also an stirrer, in this case the stirrer actually

just rotates in order to maintain the thermal equilibrium of the system.

Now, when the stopcock was open, the question, Joule asked is what is the associated

change in the internal energy? Now remember we will just use the same notation here d

cross Q or the work done is opposing pressure into d v. However, remember when the

gas expanded the opposite pressure was 0. 

Because initially, there was no gas in B. So, you can think that when the boundary of this

gas changes, when the gas tries to fill in the other container. Always this boundary fills

no opposing pressure, which means that P opposing was 0 in this case and the work done

will be nothing but 0.

So, now from the First Law, we can write d U which was del U del V T; d v plus del U

del T v d T which is nothing but d cross Q plus d cross W. But we just said that the d

cross W is 0 in this case. The d cross Q was also 0; because Joule observed no rise in

temperature. Since, delta T was 0, d cross Q also has to be 0. So, the right hand side of



this equation is 0. Now since, the delta T was 0 which means d T was also 0, which

means this term del U del V T must be zero since d v is nonzero. So, Joule said that del U

del V T is 0 according to his measurement. We will come back to it, when you discuss

the Joule Thomson Experiment.

Now, before we switch to other topics, let us briefly discuss, what is meant by this; why

del U del V T is 0 for an ideal gas. Now let us have an analogy with our particle in a box

model which we learnt in Quantum Mechanics. Now you know that as the length of the

box changes, the energy levels also changes. So, from that perspective del U del V T

should be nonzero; because it should be dependent on volume. 

However, remember that this associated change in energy is already accounted for, why?

Because we already discussed that, when work is done on the system or work is done by

the system, there is a change in pressure; that pressure is proportional to the square root

of temperature which is actually related to the supply of energy.

So, the energy we are talking of in this context is not the Kinetic energy. It is the internal

energy of the system.
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Now, let us consider another process in a similar way, where we would like to keep the

pressure of the system constant. As before we will start with writing the energy as a



function of instead of volume and temperature, this time we will write it as a function of

pressure and temperature. 

So,  the  total  differential  as  before  can  be  written  as  our  differential  with  respect  to

pressure keeping the temperature constant, multiplied by the finite change in differential

change in pressure and then, a partial derivative with respect to temperature keeping the

pressure constant, multiplied by the finite change sorry differential change in temperature

d T.

Now, similarly as before, we will consider a constant pressure process. 

(Refer Slide Time: 15:12)

So, let us write the internal energy using the First Law as d Q plus d W. In this case

remember, we are considering a constant pressure process. So, I am just using a suffix P

here; d U is d cross Q p plus d cross W; where, d cross Q p is the heat change associated

with  constant  pressure  process.  Now if  we ask  this  question,  what  will  be  the  total

differential  going  from  say  state  1  to  2,  we  have  to  integrate  over  each  term  and

remember also that in this case the work done is nothing but minus P opposing into d V.

But  here,  the opposite  pressure will  be nothing but  the pressure of  the  system itself

because it is a constant pressure process.

So, throughout the transformation the pressure was kept constant. So, since pressure was

constant, during the change we can also keep it outside the integral. So, in our next step



we will just write it as Q p; remember that we cannot write delta Q p because Q is a path

function and the second integral is nothing but V 2 minus V 1. Now on the left hand side,

I have a change in internal energy which we could write as U 2 minus U 1 and then, I

have here the constant heat change as the constant pressure minus I have p into V 2

minus p into V 1.

Now, we can organize this in a slightly different fashion. We can write it as U 2 plus p 2

V 2 minus U 2 U 1 sorry plus p 1 V 1 is equal to Q p and in this case p 1 is the initial

pressure; p 2 is the final pressure. However, p 1 is nothing but equal to P; because the

pressure was constant. The p 2 is also nothing, but equal to P; because the pressure is

constant. Just to maintain the equations similar looking, I am using instead of P p 2 and p

1, but the magnitude of p 2 and p 1 are equal to P.

So, we can define a new term which is H 2 and H 1 where, H is nothing but the U plus P

V. Now we see that this difference H 2 minus H 1 is equivalent to the heat at constant

pressure. Where, H is defined as a quantity, equivalent  to U the internal  energy plus

pressure time’s volume. So, the change in H, now is equivalent to the associated heat

change at constant pressure and H this quantity we call as enthalpy. 

Now note  that  this  enthalpy  must  be  a  state  function  because  we  could  write  it  as

difference of H at 2 different states. H 1 corresponds to the enthalpy of the system when

the system was in state 1 and H 2 corresponds to the enthalpy of the system, when the

system was in state 2.

So, since we could write it as H 2 minus H 1 or a difference of the physical quantity at

state 2 minus state 1, H must be a state function. It is not a path function. So, we got an

interesting result where, we said that when we say that change in enthalpy of the system

is  nothing but  the  equivalent  to  the  heat  change  at  constant  pressure.  Now we will

frequently use this concept. But before that, let us also discuss.



(Refer Slide Time: 20:04).

So, we just defined enthalpy H as U plus p V. Now if we take the differential or the total

differential of enthalpy, it must be equivalent to delta U plus P delta V plus V delta P.

This is using the chain rule of differentiation.

Now, remember that this is equivalent to Q p or heat change at constant pressure. Now

since, this is equivalent to heat at constant pressure, when we write delta H will write for

a constant pressure process. We can actually drop this term. So, we can write delta U plus

P delta V is nothing but Q p. Now let us try to understand, what is the, how a change in

state at constant pressure happens? 

Now as before where we wrote as U as a function of volume and temperature, in this

case  will  write  the  newly  defined  quantity  enthalpy  as  a  function  of  pressure  and

temperature and then, compare the total derivative and write it in terms of the partial

derivatives
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So, here d H is nothing but the partial derivative with respect to temperature plus partial

derivative with respect to, we first write the H as a function of pressure and temperature.

So,  the  total  derivative  is  the  partial  derivative  with  respect  to  pressure  keeping

temperature constant, multiplied by the differential change in pressure plus the partial

derivative taken with respect to temperature, keeping the pressure constant multiplied by

the differential change in temperature. 

Now as before we are considering a constant pressure process and then, you can easily

figure out that at constant pressure this term goes to 0 and then, we know that d H and

constant pressure is nothing, but d cross Q p and then we divide, if we divide both side

by d T. Then, we get del H del T p is nothing but d cross Q p by d T.

Now, this  quantity  is  nothing but heat  change per unit  rise in temperature,  when the

process is  carried out  at  constant  pressure; which means this  is  nothing but the heat

capacity at constant pressure. Now this definition of heat capacity can be used in the

original equation, where we can now write the total derivative for any process where the

pressure might be constant. Now let us consider a process where we keep the pressure to

be constant.
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So,  just  like  before,  we  wrote  the  internal  energy  as  a  function  of  volume  and

temperature and then, wrote the total derivative d U in terms of the partial derivatives. In

this  case we will  write  the enthalpy as a function of volume and sorry pressure and

temperature and then, write the partial derivative in total derivative of H as the partial

derivative  taken  with  respect  to  pressure,  keeping  the  temperature  constant  plus  the

partial derivative taken with respect to temperature keeping the pressure constant.

Now as before, if we consider a constant pressure process then d P is 0, in that case only

at constant pressure process we know d H is nothing but d Q p which is del H del T p d

T. So, from that we can easily see that, this quantity del H del T p is nothing but d sorry I

should used across Q d cross Q p by d T which is nothing but heat capacity at constant

pressure. So, we can use this relation in the original equation and write d H is nothing but

C p d T which is coming from the second term here and the other term which is del H del

p T d P.

So, remember this has a very nice analogy, which we just got in the earlier case d U is C

v d T plus del U del V T d V. By Jules experiment we saw that, this term is 0 and we also

argued that for ideal gas, since it was 0. Since Joule showed that it is 0, the we saw from

Jules experiment in the earlier case, we saw from Jules experiment that del U del V T is

0. Now the question is what is the value of del H del P T. For that, we will discuss an

experiment  which is  known as Joule Thomson Experiment.  But  before that,  we will



discuss the relationship between these 2 quantities which is C p and C v which are heat

capacities at constant pressure and heat capacity at constant volume. 


