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Now, let  us  discuss  how van der  Waals  gas  equation  can  explain  the  nature  of  the

compressibility factor. Now, remember the van der Waals gas equation is P plus a by V

square V minus b is equal to RT which we are rewriting as P is equal to RT divided by V

minus b minus a by V square. Now, the compressibility factor was defined as Z equal to

PV divided by RT. Now, we will use the value of P obtained from van der Waals gas

equation and insert it into the expression for compressibility factor to get which can be

rewritten as; now, remember that in order to explain the compressibility factor or the

behaviour of the compressibility factor in the low pressure region we can actually make

an approximation.

Since, P tends to 0, in the low pressure region which means 1 over V bar is also tends to

0 and must be very much less than 1. So, we can actually express this first term in terms

of at a lower expansion and write the compressibility factor as, this is the Taylor series

expansion for the first term and then there is an additional term. Now, we can ignore the



higher order terms because in the limit P tends to 0, 1 over V bar also tends to 0. So, we

can just use the values only up to 1 over V bar, thus we get.

Now, remember how the compressibility curve looks like. It was Z versus P and then this

was the ideal behaviour at Z equal to 1 and then for a definite gas the higher temperature

curve look like  this,  the lower temperature  curve look like this  and the intermediate

temperature curve look like this. So, we are trying to explain the behaviour at a very low

pressure region or in this region. So, in order to do that we need to understand, what is

the slope of the curve? We can calculate it from the expression of the compressibility

factor using van der Waals gas equation, which we just obtained.
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So, what we arrived at for the expression of compressibility factor in the limit of very

low pressure is, now, remember the compressibility factor expression of the plots were Z

versus P or pressure, but in this equation we have molar volume. So, what we can do

instead is writing the molar volume in terms of P. Now, strictly speaking since we are

using van der Waals gas equation we should use the expression of P in terms of volume.

However, since we are working or we are only trying to explain the behaviour in the very

low pressure region we can also use the ideal gas equation for the expression of the

molar volume which will give the expression for compressibility factor as 1 plus 1 over

RT b minus a by RT into P.



Now, in order to understand the slope of this curve at constant temperature in the limit

when P tends to 0, we get an expression like 1 over RT into b minus a by RT. So, the

important quantity here, which will dictate the nature of the slope whether it is positive

slope negative slope or 0 is b minus a by RT. If b minus a by RT is greater than 0, the

slope is positive which will explain this region, which explains these type of curves when

b minus a by RT is less than 0 that will explain the negative slope of curves for some

other temperature and when b minus a by RT is 0, that will explain when the curve

flattens  out  near  0  pressure.  We just  said  that  this  temperature  is  known  as  Boyle

temperature. So, we can get an expression for the Boyle temperature which we wrote as

T suffix B as a by b R.

So, the van der Waals gas equation yields an expression for the Boyle temperature in

terms of the constants a and b which means these Boyle temperature will be different for

different gases as a and b are constants which are different for different gases which is

experimentally observed also.
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Now, let us try to draw the isotherms for the van der Waals gas equation. So, I have

drawn isotherms for 4 different temperatures. Now, look at the first curve which is at

temperature T 1; here, notice carefully that if you recall the curve which was obtained by

Andrews which were for real gas that had a nature like this curve A, B, C, D, which we

discussed. Now, if you compare the Andrews curve with the curve that we obtained from



the model which is van der Waals gas equation, we get striking similarity in the region

CD and AB which explain the region where the substance is present as vapour or the

region  where  the  substance  is  present  in  liquid.  However,  in  the  region  when  the

substance is present as equilibrium between liquid and vapour.

The van der  Waals  gas  equation  gives  a very different  result  from what  is  observed

experimentally. We see that there is a rise region or high region and there is a deep

region. So, this kind of peak and trough behaviour is not observed experimentally. So, if

you carefully watch here this region, here, the pressure is actually higher than what it

would be for the vapour pressure. So, this region is termed as super saturated vapour

phase. Similarly, the deep region or the trough region is called the super cooled liquid

phase.  These 2 phases are not real  phases and they are metastable  phases which we

caught  by  plotting  the  van  der  Waals  gas  equation.  Remember,  the  reality  is  the

experimental curve which was obtained by Andrews.

Now, we have a very interesting situation for the van der Waals curve. Let us redraw the

curve at T 1 let us also draw a line which is parallel to the volume axis. Now, as you can

see that at this pressure which we can term as P prime there exists 3 different volumes

which  we can  denote  as  V prime  1,  V double  prime  1,  V triple  prime  1  which  all

corresponds to the temperature T 1.

Now,  what  does  that  mean?  The  substance  can  have  3  different  volumes  for  this

particular pressure. This is not surprising. This arises due to the cubic nature of the van

der  Waals  gas  equation  which  we  are  going  to  explore  in  short  before  that  as  we

discussed the surface plot or the P, V, T plot for the ideal gas equation.
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We can also plot similar surface plot for van der Waals gas equation as shown in this

figure. As you can see at the very high temperature region, this region, the surface more

or less looks like an ideal gas surface. This is not surprising because ideal gas behaviour

is observed at high temperature limit. Similarly, in the very low pressure region also the

surface  looks  like  very  much  ideal  like.  So,  the  van  der  Waals  gas  equation  can

satisfactorily  explain  the limiting  gases,  that  is,  at  high temperature  and at  very low

pressure. The equation of state will reduce to the ideal gas equation of state or the P, V, T

surface will also look like that of an ideal gas.

(Refer Slide Time: 12:52)



Now, let us discuss more on the van der Waals curve or van der Waals isotherms. Now,

we can expand the van der Waals gas equation as this and then we can multiply both side

by molar volume square and divide by pressure to get. Now, you see that the van der

Waals equation of state is actually cubic in molar volume and that was the reason why

we got 3 different followings for a particular pressure.

Now, interestingly if you remember that at low temperature the curve look like this, but

at critical temperature when T is equal to T c, the curve looks like this; which means all

this crest and trough region they equals and all these 3 different volumes which we got

for the same pressure they are equals to a single volume which we call as critical volume.

So, at the critical point we can write that the roots of the equation are degenerate or the

all 3 roots of the equation are degenerated. If we call that root as V c which is the critical

volume, we can write. We can expand this expansion as; now, we have a very interesting

situation we said that at the critical point I have an expression for a cubic equation like

this and also we arrived from the van der Waals gas equation or the expansion of the van

der Waals gas equation that the nature of the equation is cubic.

Now, we can compare term by term for these 2 equations to get very interesting relations.

If we compare the second term with a second term or the coefficients of the second terms

we get 3 V c is b plus RT c by P c, 3 V c square is a by P c and V c cube is a b by P c.

The suffix c for P and T denote that we are considering the system at the critical point.

So, we can now figure out very easily what are the values of a,  b and c from these

equations.
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For example; if you take these 2 equations and divide the second equation by the first

equation you will get a equation in terms of V c and then the value of V c will be given

by just V c equal to 3 b. Similarly, you can get the values of P c as a by 27 b square and

also the value of T c as 8a by 27 b R. So, these are the values of the critical constants

which are P c, T c and V c in terms of the van der Waals gas constants a and b.
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Now, we could alternatively do another thing. We could write a and b and also the molar

gas constant R in terms of the critical constant. If we just rearrange the expression for V



c, P c and T c which we just obtained we will get a is 3 P c the V c square, b is V c by 3

and R is 8P c V c by 3 T c.

Now, let us do one thing; let us incorporate these values of a, b and R into the original

van der Waals gas equation which is P is equal to remember, it was a by V square and if

we now incorporate the values of R, a and b from this expression which we just derived

we get a very interesting relationship. This is the expression for RT divided by V minus

b, expression for b is V c by 3 and then a by V square expression for a is 3 P c V c square

divided by V bar square.

Now, we can rearrange this nicely to get P by P c is equal to 8 into T by T c divided by 3

into V by V c minus 1, minus 3 into V by V c squared. This is just rearranging this

equation. Now, we have a very beautiful situation. What is P by P c? It is the ratio of the

pressure to the critical pressure. Similarly, T by T c is a ratio of the temperature to the

critical temperature and V by V c is the ratio of a molar volume to the critical molar

volume.

Now, if we denote these quantities by pi, tau and phi respectively. We can write the van

der Waals gas equation in a very compact form which reads as pi is equal to 8 tau divided

by 3 phi minus 1, minus 3 divided by phi square. So, this is known as the reduced form

of the van der Waals equation, because pi equal to P by P c is known as the reduced

pressure, V equal to V by V c is known as the reduced volume and similarly, tau equal to

T by T c is known as the reduced temperature.

Now, why we did it or what is the point of arriving at this reduced expression. Of course,

it is a compact expression, that is, point number one. But, most importantly it teaches us

something else look at the original van der Waals gas equation which is this equation

contains constants like a and b which are specific for a particular gas molecule. However,

the  reduced  expression  does  not  have  any  particular  constant  that  represents  one

particular gas, which means just like in an ideal gas there was no particular constant

which is specific to a gas. We have reduced the van der Waals equation also in a similar

form which is independent of a constant which is very specific to a particular gas.

So, the loss of generality which was there in this original van der Waals gas equation has

been regained in the van der Waals equation when it is written in the reduced form which

means that if we do an experiment and plot say the compressibility factor as a function of



not the pressure, but the reduced pressure using this reduced equation of state. We should

get similar curve for all the gases.
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To  convince  you  this  fact,  here,  I  show  you  the  expression  or  the  plots  for

compressibility factor as a function of reduced pressure, which we will denote it as pi.

Now, note that this is plotted at various tau values or the reduced temperature. For a

given tau, all the gases like nitrogen, methane, propane and ethane, they behave very

similar. They all fall on the same curve, for any given temperature which means they all

now behave similarly. But, now the trick is that they are not behaving ideal because if

they had behaved ideally the value will be just the curve will look like just a flat line and

Z equal to 1 which is the ideal behaviour.

So,  what  we  did  is  that  we  cleverly  replaced  the  constants  a  and  b  by  the  critical

constants which are T c, P c and V c and by taking the ratio of the pressure to the critical

pressure and so on, we have defined few parameters which are reduced parameters and if

we plot the compressibility factor against the reduced pressure it is no surprising that all

the gas molecules should behave similar way, because there is no explicit constant in the

equation  that  explains  a  particular  or  that  actually  corresponds  to  a  particular  gas

molecule.



(Refer Slide Time: 25:34)

So, let me summarise what we discussed so far. We started with a discussion of ideal gas

equation. We showed that ideal gas equation is only a hypothetical situation; however,

real gases can obey the ideal gas situation only in limiting gases, when the temperature is

too high or the pressure is too low. Secondly, we discussed the deviation from the ideal

behaviour; there we discussed 2 main experiments the variation of the compressibility

factor  with pressure as well  as the isotherms for the real  gases which are known as

Amagat’s curve and Andrews curve respectively.

Then, we discussed the development of a model which is the van der Waals model and

we discussed in details the van der Waals gas equation. We discussed how van der Waals

gas equation satisfactorily explains the existence of a critical point, but it cannot explain

the liquid vapour equilibrium region. We also wrote the van der Waals gas equation in a

very compact form and said the loss of generality which was in the original form of the

van der Waals equation where a and b constants were included, that loss generality is

regained in it is reduced form which is more compact to use.

In the next lecture, we will start our discussion on classical thermodynamics. We will

first define few terms and then we will move on and see how we can calculate different

quantities which are measurable quantities for ideal gas as well as for a real gas and for

the real gas we will use the model of van der Waals equation.



Now, before we finish there are also many other models that are more accurate than the

van der Waals model, however, we will frequently use the van der Waals model here,

because of its simplicity of use.

Thank you.


