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Lecture - 11
Second Law – part 1

Welcome back. So, in the last part, we discussed about first law of thermodynamics we

discussed about the essence of the law that it is a law of conservation of energy and we

discussed about few statements like; we discussed there in a cyclic process, the work

done will be equal to the heat withdrawn, which means that first law of thermodynamics

discusses about only the law of conservation of energy; however, if you ask this question

that suppose; if we have, nitrogen and hydrogen in a mixture to produce ammonia at

equilibrium  how  much  nitrogen?  How  much  hydrogen  and  how  much  ammonia  is

present?  The  first  law  cannot  answer  the  only  answer,  it  can  give  is  through  mass

equilibrium  we  know  that  there  will  be  a  finite  amount  of  nitrogen  hydrogen  and

ammonia and we know that total amount of the mixture.

However the equilibrium concentrations cannot be predicted. So, the second law actually

yields or answers give gives an answer to such questions. Now to begin with we will first

use the statement of the second law; the second law, was mostly developed by a French

engineer Sadie Carnot and then his work was revived by many others and then put they

put it in a modern form. So, what we are going to discuss is that modified form of Sadie

Carnot work. So, let us first look at the statement of the second law; these statements

actually come from natural experience from the work on heat engines.



(Refer Slide Time: 02:24)

Now, there  are  two statements  I  have written  here the first  one is  known as;  kelvin

Planck statement, it is based on Sadie Carnot’s work and it was a revised statement given

by lord kelvin or William Thomson who is also known as William Thomson and max

Planck,  the statement  says  it  is  impossible  for a  system to undergo a  cyclic  process

whose  sole  effect  are  the  flow of  heat  into  the  system from heat  reservoir  and  the

performance of an equivalent amount of work done by the system to the surrounding.

What  does  it  mean?  It  means;  suppose  let  us  consider,  I  have  heat  bath  at  some

temperature let us say I am calling this temperature as T H and then there is a engine

which is our system and this system is withdrawing say some amount of heat from the

surroundings which is  in this case the hot path and then producing in a work in the

surrounding which is  equivalent  to  the magnitude  of which is  equivalent  to  the heat

withdrawn from the surrounding, now we already discussed in the first law that for a

cyclic process this is true, but the second law is saying that complete conversion of heat

into work is not possible.

So, this example shows you that it does not violate first law; however, it violates second

law in that here we are assuming the com complete conversion of work into heat which

is not possible, now if that is not possible then how much heat or how much amount of

work can be produced from a given amount of heat? That we have to work out and that is

what we are going to do in today’s lecture, now another statement we often say is known

as  the  Clausius  statement  how will  discuss  about  Clausius  work  on  particularly  the



irreversibility or the directionality of a process which is known as Clausius inequality

sometime later, but before that we will just discuss the Clausius statement of the second

law for thermodynamics  and the statement  says that  it  is  impossible  for a system to

undergo a cyclic process whose sole effects are the flow of heat from a cold reservoir and

the flow of an equivalent amount of heat out of the system into an hot reservoir.

So,  Clausius  statement  says;  that,  suppose  I  have  a  cold  reservoir  and I  have  a  hot

reservoir, but the temperature of the hot reservoir is greater than that of the cold reservoir

and if I thermally connect it to a system I connect both of them Clausius statement says;

that  it  is  impossible,  that  the system withdraws some amount  of heat  from this  cold

reservoir and flow the same amount of heat which will be same let me just denote it as Q

to the hot reservoir, so this is not possible. So, we will see actually why if we what

happens? If these laws are actually violated now there is an equivalence between the

Clausius statement and kelvin Planck statement but we will not discuss it here, we will

first proceed with the kelvin Planck statement and we will show in a minute that if we

construct or if we hypothesize a system that violates the second law of thermodynamics

then we can get a complete conversion of heat into work which is not possible.

Now before going into the details as I said that all these statements are actually realized

in experiments on heat engines, let us first describe what is a heat engine?
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Now, usually in chemistry we do not talk too much about heat engines, we usually talk

about chemical systems where who are actually flow of energy into the system or out the

system  is  associated  with  some  chemical  transformation,  but  here  usually  the  heat

engines  are  used in  engineering community  to understand the efficiencies  of various

types  of  engines;  however,  the  concept  built  in  discussing  the  heat  engines  will  be

utilized  subsequently  to  describe  the  directionality  or  spontaneity  of  many  chemical

processes.
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Now let us understand what a heat engine is? Now, a heat engine by a heat engine we

mean that there is a engine which is nothing but our system and that withdraws heat from

a hot reservoir, meaning a reservoir which is at a temperature which is of course, hotter

than another reservoir which we term as cold reservoir and the temperature of that we

denote as T C with the condition that T H is greater than T C and in the process oh the

system or the engine which is  the heat engine takes the same amount of heat and it

releases some amount of heat to the cold reservoir and in the process as a balance it also

produces some work, now what I have drawn here is; schematically means that, if I use

the first  law of thermodynamics  and we can actually  give a formulation for this  but

before that let us try to understand one intra in important thing; that suppose, this system

is our already familiar  system which is a called ideal  gas or some gas confined in a

cylinder  and  where  a  piston  is  also  act  as  a  boundary  between  the  system and  the

surrounding. 



Now if the gas expands then the piston will move upward if the gas contracts then the

piston  will  move  downward,  now  this  motion  of  the  piston  can  be  very  cleverly

connected to a axle where this motion up and down will cause a rotation of this axle and

thereby you can actually get a rotational motion further which may run something; say,

this may run actually a steam engine now this was actually the first design which James

watt used to design his engine which was run by steam

So, the material which he used was nothing, but steam now this was again based on

Sadie Carnot’s work now try to understand here that if the engine if we expand the gas

and if we do some work of course the wheel will rotate, but then we have to also come

back because we have  to  keep it  going otherwise  there  is  no point  of  designing or

devising a machine. So, what it means that? This engine or this system should work in a

reversible fashion so this is very important, the reversibility of the working. Now we say

that if there is a reversible process which means; actually it is a it should also work in a

cyclic manner, because this system should actually come back to it is original state and

again expand then contract to maintain this process and maintain the reversibility.

So, in order to maintain the reversibility we can say from the first law; that, for any

reversible cycle as we know that the associated change in internal energy should be 0

and from first law; it is nothing but, related to the heat withdrawn and work done. Now

look at it here actually we have two types of heat one heat is actually withdrawn from

the surrounding and one heat is released to the surrounding, but there are two different

surroundings  here  one  surrounding  is;  the  hot  bath  or  hot  reservoir  and  then  hot

surrounding is the cold bath or cold reservoir, so the system or the engine takes up the

heat from the hot reservoir and releases it to the cold reservoir.

So, we can write it in this way and perform some work of course, so this Q is nothing,

but a combination of Q H and Q C, now note that; usually we use a convention, that for

Q H we use a positive convention because it is a heat withdrawn from the surrounding to

the system and for Q C has to be a negative quantity, because it is released into the

surrounding  which  is  the  cold  bath  here  or  in  other  words  we  can  say  it  slightly

differently;  that  the,  heat  withdrawn from the  hot  reservoir  is  nothing  but  the  heat

released in the cold reservoir plus the work done by the system now the negative sign

here in the first term which is Q C here indicates that heat is released to the surrounding

which is the cold reservoir here and the negative sign associated with the W or the work



done indicates that the system performs work, because we took a convention that if the

work is done on the system that is a positive work and if the work is done by the system

that is a negative work.

So, in some sense the total amount of heat is partitioned into some amount of heat and

some amount  of  work,  that  is  the essence  of  second law. What  we just  said in  the

previous slide a statement that complete conversion of heat into work is not possible, I

cannot take Q H and completely convert it  into a work which is equivalent to Q H,

always whenever I am withdrawing some heat some amount of heat will be always lost

which is Q C and then the rest will be produced rest will be utilized to produce work;

which means, if we can make the Q C to be 0 then we can approach the limit which is Q

H is equivalent to the negative of work done negative in the sense that it is work done by

the system but that is not possible, we will always have some finite amount of Q C and

that  will  reduce  the  efficiency  of  the  heat  engine.  Now how will  you calculate  the

efficiency? Keeping in mind that, this efficiency of the system or the heat engine has to

be in such a way that the system or the engine runs in a cyclic fashion and in a reversible

cyclic fashion.
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Now the first answer to this problem was given by French engineer as we already told

Sadie Carnot and then Carnot proposed a hypothesized mechanical cycle, by who which

one can withdraw heat from a hot body and release it to a cold body and simultaneously



perform some work using a system. So, we will first try to understand it in our already

familiar pressure volume diagram, because that will tell us how much work has been

done or has been performed in a cyclic process where the cycle is initiated by something

like;  withdrawal  of the heat,  now suppose the we have some change in state  of the

system say from state 1 to state 2 and in this process the heat is first withdrawn, now this

is an arbitrary line which I have drawn going from arbitrary path.

Because remember that the amount of heat withdrawn will be dependent on the path,

because heat is a form of energy and it is a path function. Now think about it like if we

have to withdraw heat from a source and then if this process going from 1 to 2 is not an

isothermal process meaning that is the temperature of the system actually gets increased

in the process, then the we can say that this transformation or the transfer of the heat

from the outside must be irreversible,  because if it  is happening at a increase in the

temperature  then  such  flow  of  heat  has  to  be  irreversible,  in  order  to  maintain

reversibility  because we have to maintain it  remember because the system has to be

restored in it is original condition, then we assure one thing that this path has to be an

isotherm so this cannot be an wavy line that as we have drawn here the first part has to

be  some  isotherm,  where  the  system actually  withdraws  heat  from the  surrounding

which is the hot reservoir keeping at the same temperature of the surrounding or the hot

reservoir. 

Similarly by the same token when the system releases it remember it will release it to a

cold reservoir and which is at a temperature T C and since T H is greater than T C, then

we can say that;  by the same token, the system must be brought in contact with the

resolver, but before that the systems temperature has to be equal to the cold reservoirs

temperature,  so means these two are 2 isotherms has to be in the steps at which the

system is withdrawing heat from the hot reservoir or the system is releasing heat to the

cold reservoir, now since T H and T C are different  these two of course,  these two

isotherms are different isotherms and I have drawn the isotherm for releasing the heat Q

C to the colder body at a position which is lower than that earlier isotherm the reason is

T H is less than T C.

Now this is basically a reverse process, but we have to connect it remember in the first

process  we  said  the  system  is  withdrawing  heat  from  the  reservoir  keeping  at  a

temperature T H it is an isothermal process, then we said that there is another process



what the system is releasing the heat Q C to the cold reservoir keeping at a temperature

T C, now in order to achieve these two things in between the system must make a

transition where the temperature of the system goes from T H to T C.

So,  what  i  said  is  that  earlier  the  system was  in  thermal  equilibrium  with  the  hot

reservoir  and  then  we  have  to  cool  down  the  system,  so  that  it  comes  in  thermal

equilibrium with the cold reservoir, so that we can do some isothermal expansion in this

case and then again an isothermal compression. So, we need actually two adiabats to

connect these two isotherms and the real meaning here is that; the adiabats, are required

to change the temperature of the system from T H to T C and then from T H, T C to T H.

So, we have considered a cyclic process in this case. Now this is the actual formalism

which Carnot came up with now let us try to understand how much work is done for

each step of the process so that we can calculate the total work done in the process? 

(Refer Slide Time: 21:05)

Now, let us also designate that we will call this as step one this as step 2 this as step 3

and this as step 4 and we can just quickly redraw it once again, so that we can always

refer. So, this is basically the Carnot known as Carnot cycle, so it is going from state 1 to

2 by isothermal expansion; then 2 to 3 by adiabatic expansion, then 3 to 4 by isothermal

compression, then 4 to 1 again by adiabatic compression. Now; this is step 1, this is step

2, this is step 3 and this is step 4 and this cycle is continued and the system or the heat



engine continuously take for 8 in each cycle  Q H amount of heat and releases Q C

amount of heat. 

So, let us now try to understand what is the work done in this entire process, now for

that we will use the first law of thermodynamics which tells that d U is nothing, but d

cross Q plus d cross W or we can actually use the finite change relationship because this

is for the differential change, but since one when the system is going from state 1 to state

2 it is a finite change, so we will better write it as delta U is Q plus W, now in the step 1:

what it does? think about it is an isothermal expansion.

So, in the isothermal process see it is internal energy is a function of temperature only

delta u for step one will be 0. So, from first law the left hand side of this equation is 0 is

equal to the heat associated in this case is nothing, but Q H and associated work I am

writing at writing as W suffix 1, similarly in step 2: we have an adiabatic compression,

now for adiabatic compression we have there is no heat change because it is an adiabatic

and then instead of delta U if it is an ideal gas we could write it as C v d T between the

states 2 to 3, if it  is an one mole ideal gas we can actually write it  as C b bar d T

assuming that C v does not depend on the range of that temperature over which the

transformation was made and then there was a term del U del v T d v, but we already

said that term is 0 for ideal gas.

So, that  should be equal  to 0 because Q H is  0 for an adiabatic  process plus W 2,

similarly for step 3: remember that again there is an isotherm, but now heat is released Q

C amount of heat is released so I have to use a negative sign plus W 3 and then again in

step 4: there is another adiabat and remember that in this case I am going from state 4 to

state 1 d T and which is nothing but 0 because it is an adiabatic process, so associated

heat exchange is 0 so W 4. So, the total W can be obtained by adding all the W’s and let

us see what is the total work done? So, it is basically W 1 plus W 2 and so on.

So, the first equation gives us in the first process it is minus Q H, the second equation

gives us it is C v and integral of d T between the limits 2 and 3, let us suppose that the;

what happened between 2 and 3? Think about it. Initially the system was actually at a

temperature  T  H,  so  the  initial  temperature  of  the  system  was  T  H  and  the  final

temperature of the system was T C during the process 2 this has happened. So, this will

be nothing, but C v T c minus T H and then for the third process again will have; plus Q



C and again in the fourth process will have; C p T H minus T C because here the final

temperature is again T H for the fourth process these are the two adiabats and the initial

temperature is T C. 

So, we will use the molar quantity, so we are using C b bar notation. Now let us try to

understand. So, what is this total energy that we total work done that we got? Now the

efficiency  of  an  heat  engine  is  defined  in  the  following  way  which  is  denoted  as

sometimes e or some textbook write it as eta, which is denoted as how much work is

produced in the process and how much heat has been withdrawn in the process, now

remember the work produced in this case; I will write it as, minus W because it is work

produced by the system and the heat withdrawn in this case; is Q H, because it withdrew

the heat only in the first step. So, in the according to the second law this efficiency

cannot be equal to 1 because if  it  is equal  to 1 then the magnitude of Q H will  be

equivalent to magnitude of W which is not possible, complete conversion of heat into

work is not possible.

So, this efficiency should be always less than 1, now let us try to calculate what was the

efficiency that we just got by this in Carnot cycle, so we already see here that these two

quantities cancel with each other because they just have opposite sign, so ultimately we

get something very interesting which is Q C minus Q H and then if we just plug in into

this equation we will get that it is Q C minus Q H, but with a negative sign, so it will be

Q H minus Q C and that is the expression for minus W. So, ultimately we will get the

efficiency to be equivalent to Q C by Q H, now this is the expression for efficiency of a

Carnot engine,  if the engine was or the material  of the engine active material  of the

engine was an ideal gas now think about it; that if we had Q C close to 0, meaning if we

had a  absolute  0  sink  or  heat  sink  where  actually  I  am dumping  the  heat  then  the

efficiency goes close to 1 or we could have met the Q H the heat source to have infinite

having infinite temperature there also we will see that we can get the efficiency to be

closer to 1.

So, right now we have written it in terms of the heat withdrawn, but we will write it in

terms of also the temperature of the cold and the hot reservoir, let us see how we can get

to that expression. 
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So what we just said is that; let us just focus on the step 2 and step 4 which are basically

the adiabats, which are these two steps where we are going from 2 to 3 and 4 to 1, now

think about it; in this case, what was the total cyclic? This is a cyclic process of course,

the entire process, will mostly to get to that relationship between heat withdrawn and the

temperature at which it is withdrawn we need to again consider the cyclic process, now

for every cycle let us write it in this way that; I have for in the cyclic process d Q is d

cross Q plus d cross W which follows from the first law, now I will just write a suffix

reversible here in order to denote that it  is for a reversible process and usually for a

reversible process all the d Q’s should add up to 0 that is well known. 

Now, let us try to a for a reversible cyclic process by the way, but in this case actually

reversible isothermal process it will be 0 not for any cyclic process, but in this case we

will  show that this  term also will  go to 0, now before going to that what is  d U is

nothing, but the C v d T and d cross Q reversible we are just keeping it as such and then

I have the reversible work done that minus it is P opposing d V. Now each of this term it

is basically what the way we have drawn it here, we have drawn the cycle this is the

Carnot cycle and we have written an expression for the entire cycle itself, but the cycle

has actually four parts now a cycle means there was a cycle for d U there is a cycle for d

cross Q reversible there is a cycle for d cross W reversible that is what we have written

here;  however,  remember  each  of  this  term actually  is  can  be  split  into  four  terms

because there are four steps.



Now for example: in the first case C v d T was 0 because it was isothermal and then we

had some C v d T which is basically C v T the final temperature was T C minus T H then

again it was 0 for the third step and in the fourth step it was C v T H minus T C which

basically  cancelled  out  and then let  us just  focus  on these term;  which says,  that  P

opposing d V now usually not usually easier for any isothermal process or any adiabatic

process also since it they are both reversible the P opposing can be set to be equal to the

pressure of the system because actually these are all reversible, remember that this path

is a reversible isothermal path and this path is a reversible adiabatic path. So, we can

write it as minus P d V and using the formula we can just write for the ideal gas it is n R

T by V d V, now we can divide both side by T to get a equation something like; integral

C v d T by T is equal to cyclic integral of d cross Q reversible by T minus n R cyclic

integral of d V by V.

Now what is the value of this? In the first case; you will have some pressure volume

work and first step 1, so that will be minus n R l n say V 2 by V 1 where V 2 is this

volume and V 1 is  this  volume and then you can  actually  work  out  for  each  step;

however; you will figure out, that they all cancel each other why because it is a cyclic

process since it is a cyclic process you can easily figure out that this term also goes to 0

and we already told that this term also goes to 0. So, what we get is? This term also

should  be  0,  d  Q  reversible  by  T over  a  closed  cycle  path,  now  we  have  a  very

interesting situation here we see that d cross Q is not an exact differential, so for any

cyclic process we already discussed that d cross Q is not 0 when we discussed about the

first law and then we said similarly d cross W was also not 0 and then we added them

and define that found out that their addition is 0 and from there who we got a quantity

which  is  d  U cyclic  integral  of  that  was 0 that  is  why it  you called  it  as  an  exact

differential.

Here  we are  getting  similar  situation  we see  that  d  cross  Q divided  by T I  should

maintain this notation because d reversible divided by T is 0. So, for any cyclic path

which means; all the, d cross Q is not a state function, d cross Q reversible by T is a state

function and that we are denoting as d S, so we can write it in a compact from that cyclic

integral of d S is equal to 0 where S is known as entropy of the system, now again

entropy of the system does not have any meaning, we only talk about change in entropy

of the system this is the differential change and we are talking about a cyclic path. 



So,  we see  that  entropy is  a  state  function  and entropy is  defined as  the  reversible

exchanged divided by the temperature at which it was changed.
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Now, we will  proceed with the entropy in a while,  but before that  will  first  discuss

something  known  as  Carnot  theorem.  Now  this  is  again  based  on  a  conceptual

understanding how a heat engine works? Now the theorems tale tells you that no heat

engine can be efficient than a reversible heat engine.

So,  our  reversible  heat  engines  are  maximal  efficient  engines,  now  why  how  to

understand this  process?  Let  us  consider  as  before that  there  is  a  reversible  engine,

which we denote as say some system or engine which is reversible and it is withdrawing

heat from the cold reservoir and it is performing some work and also it releases the heat

which is say Q C to the cold reservoir, so this withdrawing heat from the hot reservoir

and releasing heat to the cold reservoir, now since it is a reversible engine which what it

means is that? It can also work in a reverse direction; now let us hypothesize a situation

that we have a source or heat sink at temperature T H heat source sorry and a heat sink

which is at temperature T C, so this is nothing, but a hot reservoir and this is nothing, but

a cold reservoir or sometimes we call it as a source or heat source and this we call it as

heat sink. 

Let us have our irreversible engine which is withdrawing heat from this hot reservoir

and transferring the heat to the cold reservoir and let us couple to it our reversible heat



engine which actually is now working in a reverse direction, since it is reversible we can

always  reverse  it  direction.  Now suppose  the  amount  of  heat  which  this  reversible

engine is dumping to the hot reservoir is the same amount which does other engine is

withdrawing from the hot reservoir and we also couple these two reservoir, now the

efficiency for the reversible engine will be nothing but 1 minus if we write it in terms of

the  temperature  of  that  we  are  ready  to  prove  that  relationship,  we  can  write  it  as

temperature  of  the  cold  body  minus  temperature  of  the  hot  body  similarly  for  the

efficiency of the other engine for any engine actually we should in this way, now we it is

not necessary this at this point so we can also bypass this relation.

So, we can write efficiency of our reversible engine with the original a definition that it

is the work done divided by the heat withdrawn in this case the heat withdrawn is Q H, it

will be not Q H it will be some other Q which is say Q C and then for the irreversible

engine it will be the work done divided by the heat withdrawn, but the heat withdrawn in

this case is Q H and since we know that we have said remember that these 2 Q H’s are

same  meaning  the  heat  withdrawn  by  the  irreversible  engine  is  similar  to  the  heat

dumped by the reversible engine and since Q C or the irreversible engine efficiency like

if we assume that it is more than the reversible engine efficiency we can easily get a

feeling that Q H should be greater than Q C.

Now,  what  does  it  mean?  That  means,  it  is  actually  taking  the  net  effect  of  this

composite system is that as if it is withdrawing some heat from the cold reservoir and

then the  second engine  does  some work part  of  it  is  transferred  to  the  first  engine

because it has to balance this Q C and Q H because Q H is greater than Q C, so part of

this work is converted to balance to add up with this Q C to give Q H which is being

transferred to the hot reservoir and again from the hot reservoir this engine is taking up

Q H heat. So, from the hot reservoir we see that there is nothing withdrawn or gained

because the heat deposited at by the reversible engine is the heat which is withdrawn by

the irreversible engine. So, everything is happening with respect to the cold reservoir

and what we see here is that the net effect is withdrawing the heat somehow from the

cold reservoir and performing some work, so which violates the kelvin Planck statement.

So, this cannot be possible which we conjectured or the reversible engine cannot be less

efficient  than the  irreversible  engine  now you can similarly  argue that  if  I  had two

reversible engines and you can similarly show that if I have a reversible engine 1; which



is more efficient that than the reversible engine 2 you can make an analogy, but then one

can easily switch this in the position you can put the irreversible reversible engine 1 here

and 2 here and then you can get another relation which is basically irreversible  2 is

greater than a irreversible 1; which means, these are contradictory statement and this

leads  to  the  another  way of  looking at  the  Carnot  theorem,  that  between  two same

temperatures a reversible engine must be more efficient than an irreversible engine.
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So, before we conclude we will just quickly discuss one particular relation. So, we had

already discussed that cyclic integral of d cross Q reversible by T is 0 now from the

Carnot cycle we know that for the first step what is the value of this; for the first step it

is Q H drawn at a temperature T H, in the second step it was adiabat no heat was drawn

withdrawn and then in the third step again it  was minus Q C because the heat  was

released at a temperature T C and in the fourth step it was again 0. So, overall what we

are getting is; Q H by T H minus Q C by T C and then since the entire thing is equal to 0

we can write; Q C by Q H is nothing, but T C by T H. So, the equation for efficiency e

or eta we could write 1 minus Q C by Q H which is equivalent to writing 1 minus T C by

T H. 

Now you can see that if T C approaches close to 0 the efficiency goes close to 1 or if T

H approaches close to infinity then also the efficiency goes to 1; however, for finite



cases  since  T C is  less  than  T H will  have  some fractional  value  for  this  and  the

efficiency will be always less than 1.


